

Network
Testing &
Emulation
Solutions

Founded in 2000

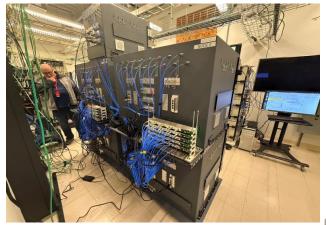
Focus on Network testing and Emulation Solutions

WiFi test solutions since 2006

Team of Networking Technologies and Firmware Experts

Helping over 200 customers, design, develop and deploy high quality networking products

Candela Wi-Fi Test Solutions Overview

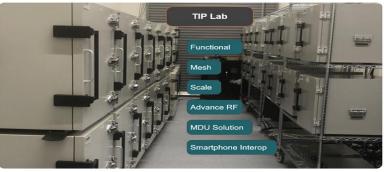

1-360-380-1618
























Candela-US (HQ) and Candela India – Visakhapatnam (HQ)







Candela-US and Candela India Teams -100% Engineering organization







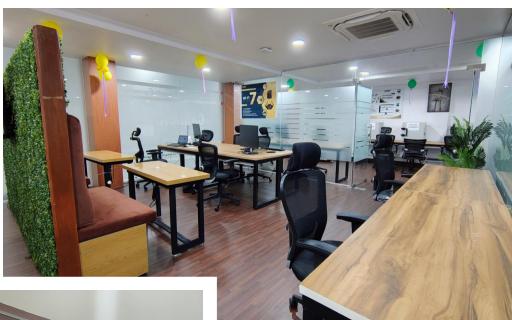






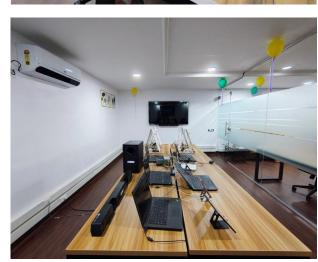






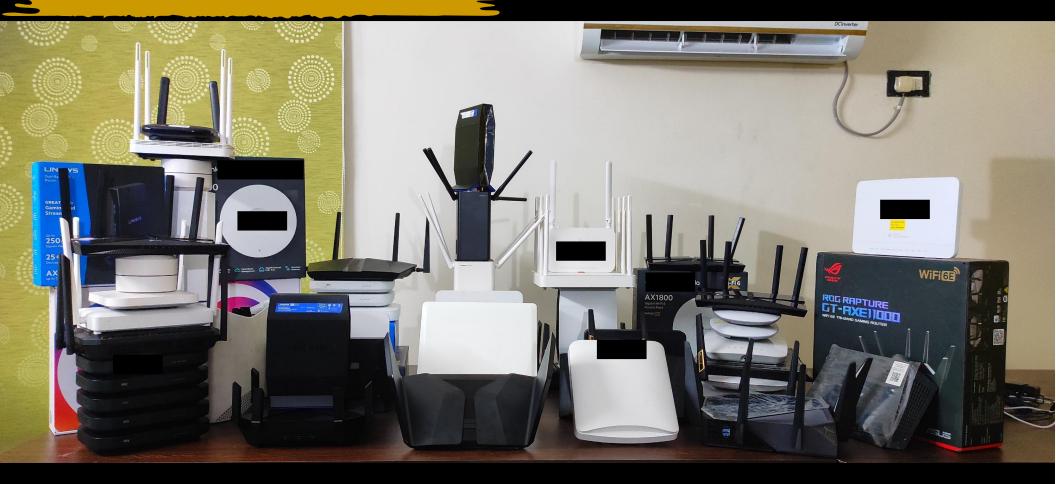















# APs Tested in our India Lab



# The 3-approaches for Wi-Fi AP/Router Testing









Lab Testing with Virtual Devices

Repeatability:

Scalability:

Automation:

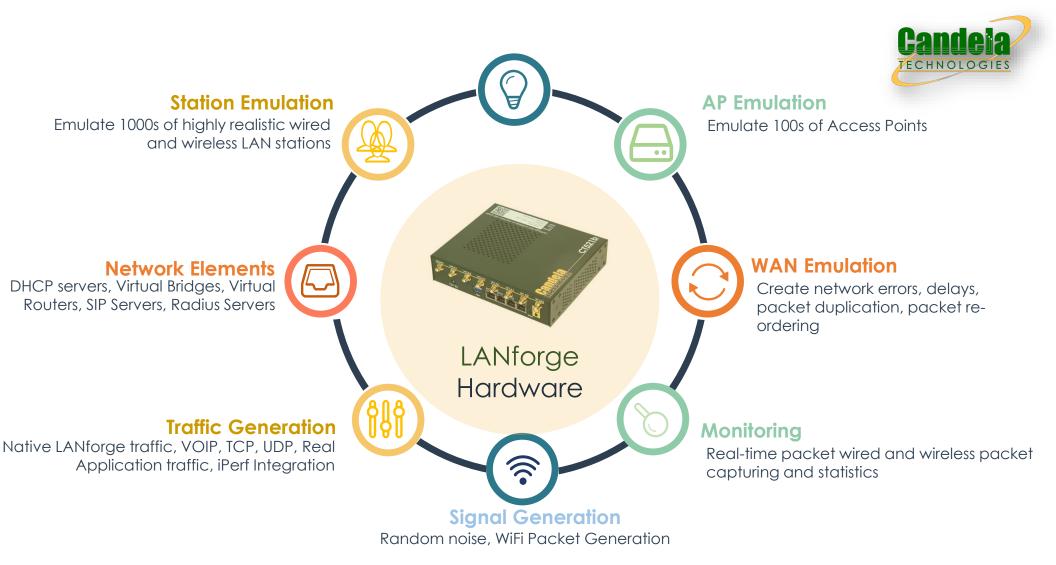
Realism:

Lab Testing with Real Devices

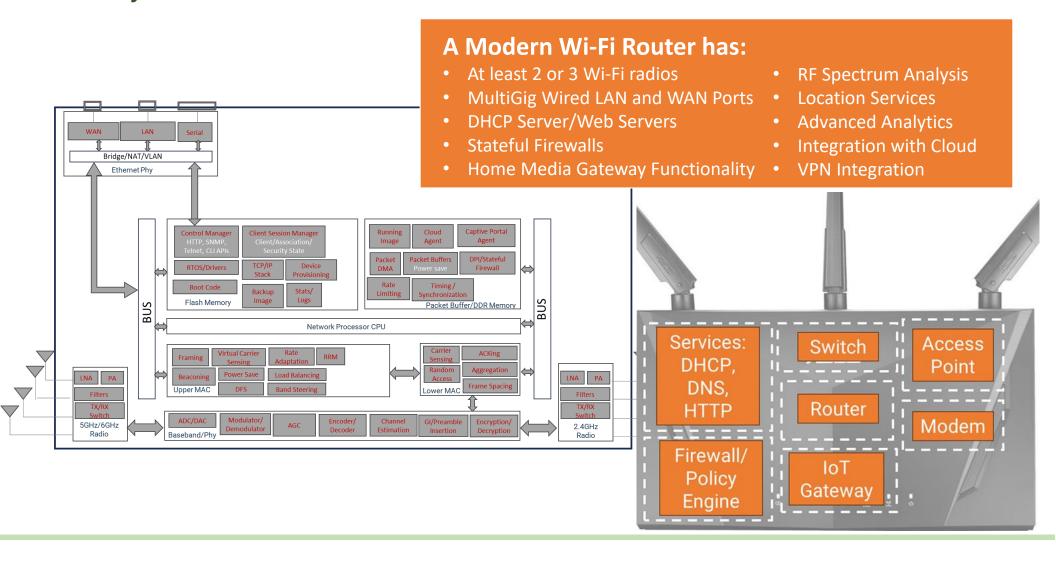
| Repeatability | y: |
|---------------|----|
| Scalability   | :  |
| Automation    | :  |
| Realism       | :  |

Real world Testing in Test House/Enterprises

| Repeatabilit | y: |
|--------------|----|
| Scalability  | :  |
| Automation   | :  |
| Realism      |    |


### Staged Testing Catalog

| Stage-1: Lab Testing with Virtual Clients |                                                     |                   |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------|-------------------|--|--|--|--|
| Sl No.                                    | Test Suite/Test Case                                | Estimated<br>Days |  |  |  |  |
| 1.1.0                                     | Basic Testing                                       | 5                 |  |  |  |  |
| 1.1.1                                     | AP Capabilities & Power Cycle                       | 1                 |  |  |  |  |
| 1.1.2                                     | Client Capacity with Open, WPA2/WPA3.               | 0.5               |  |  |  |  |
| 1.1.3                                     | Single Client Throughput Test on 2.4, 5, and 6 GHz. | 1.5               |  |  |  |  |
| 1.1.4                                     | Single Client Throughput Test on 2.4, 5, and 6 GHz  | 1                 |  |  |  |  |
| 1.1.4                                     | bands with different packet sizes                   | 1                 |  |  |  |  |
| 1.1.5                                     | 8-Hour Long Duration Stress Test                    | 1                 |  |  |  |  |
| 1.2.0                                     | Advanced Testing                                    | 18                |  |  |  |  |
| 1.2.1                                     | Client Connectivity with 802.1x                     | 0.5               |  |  |  |  |
| 1.2.2                                     | Multi/Max Client Throughput                         | 2                 |  |  |  |  |
| 1.2.3                                     | Multi Band Throughput                               | 1                 |  |  |  |  |
| 1.2.4                                     | Bi-Directional                                      | 0.5               |  |  |  |  |
| 1.2.5                                     | Multicast Traffic                                   | 0.5               |  |  |  |  |
| 1.2.6                                     | Quality of Service                                  | 0.5               |  |  |  |  |
| 1.2.7                                     | FTP/HTTP                                            | 0.5               |  |  |  |  |
| 1.2.8                                     | Auto Channel Selection                              | 1                 |  |  |  |  |
| 1.2.9                                     | Air Time Fairness                                   | 0.5               |  |  |  |  |
| 1.2.10                                    | OFDMA                                               | 0.5               |  |  |  |  |
| 1.2.11                                    | MU-MIMO_                                            | 0.5               |  |  |  |  |
| 1.2.12                                    | Interference Testing ACI/CCI                        | 11                |  |  |  |  |
| 1.2.13                                    | Receiver Sensitivity                                | 1.5               |  |  |  |  |
| 1.2.14                                    | Rate vs Range_                                      | 22                |  |  |  |  |
| 1.2.15                                    | Rate vs Range vs Orientation                        | 22                |  |  |  |  |
| 1.2.16                                    | Band Steering_                                      | 0.5               |  |  |  |  |
| 1.2.17                                    | Dynamic Frequency Selection                         | 3                 |  |  |  |  |
| 1.3.0                                     | More Advanced Testing                               | 20                |  |  |  |  |
| 1.3.1                                     | Validating Wi-Fi 7 Feature's.                       | 3                 |  |  |  |  |
| 1.3.1.1                                   | Multi Link Operation                                | 0.5               |  |  |  |  |
| 1.3.1.2                                   | Preamble Puncturing                                 | 0.5               |  |  |  |  |
| 1.3.1.3                                   | 320 MHz, 4K QAM                                     | 0.5               |  |  |  |  |
| 1.3.1.4                                   | BSS coloring                                        | 0.5               |  |  |  |  |
| 1.3.1.5                                   | MU-OFDMA                                            | 11                |  |  |  |  |
| 1.3.2                                     | TR-398 Issue2/3/4                                   | 10                |  |  |  |  |
| 1.3.3                                     | Validating Mesh Features and Performance            | 44                |  |  |  |  |
| 1.3.3.1                                   | Mesh Functionality – Mesh Discovery, Peering,       | 1                 |  |  |  |  |
|                                           | Path Selection_                                     | ·                 |  |  |  |  |
| 1.3.3.2                                   | Mesh Roaming with different topologies              | 33                |  |  |  |  |
| 1.3.4.0                                   | Scale Testing - Connecting 500+ clients             | 3                 |  |  |  |  |


|        | Stage-2: Lab Testing with Real cli                                                       | ents          |
|--------|------------------------------------------------------------------------------------------|---------------|
| Sl No. | Test Suite/Test Case                                                                     | EstimatedDays |
| 2.1.0  | Features & Performance                                                                   | 27            |
| 2.1.1  | Client Connectivity with Open, WPA2, with different OS types of Windows, Linux, MAC, iOS | 2             |
| 2.1.2  | Throughput with different types of Phones/Tablets/Laptops                                | 2             |
| 2.1.3  | Ping Test with different OS types of Windows, Linux, MAC, iOS                            | 1             |
| 2.1.4  | File Transfer Protocol                                                                   | 2             |
| 2.1.5  | Video Browsing using Dash/Progressive/HLS Media                                          | 1.5           |
| 2.1.6  | Web Browsing - Online & Offline Method                                                   | 1             |
| 2.1.7  | Multi Cast Traffic                                                                       | 1.5           |
| 2.1.8  | QoS                                                                                      | 2             |
| 2.1.9  | RvR                                                                                      | 3             |
| 2.1.10 | Band Steering                                                                            | 2             |
| 2.1.11 | Roaming with different topologies                                                        | 3             |
| 2.1.12 | Mixed Traffic (QOS, FTP, HTTP, PING, MULTICAST)_                                         | 2             |
| 2.1.13 | High Stress with different load, protocols for 8 Hours                                   | 2             |
| 2.1.14 | Real Application Traffic like YouTube, Microsoft Team, Zoom and Real Browser Testing     | 2             |



| Stage- | Stage-3: Test House Testing with Real Clients                                   |                    |  |  |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|
| Sl No. | Test Suite/Test Case                                                            | Estimated<br>Days_ |  |  |  |  |  |  |  |
| 3.1.0  | Coverage Testing                                                                | 4                  |  |  |  |  |  |  |  |
| 3.1.1  | RSSI coverage Test in 2000+ sq ft Test<br>House with single, two/three node     | 4                  |  |  |  |  |  |  |  |
| 3.1.2  | Throughput (TCP, UDP - UL, DL & Bi-Di) with single/two/three nodes              | 4                  |  |  |  |  |  |  |  |
| 3.2.0  | Capacity                                                                        | 8                  |  |  |  |  |  |  |  |
| 3.2.1  | Client connectivity with 50+ devices spread across the floor                    | 1.5                |  |  |  |  |  |  |  |
| 3.2.3  | Throughput per Band                                                             | 2.5                |  |  |  |  |  |  |  |
| 3.2.4  | Throughput per Node                                                             | 2.5                |  |  |  |  |  |  |  |
| 3.2.5  | Load Balancing                                                                  | 2.5                |  |  |  |  |  |  |  |
| 3.2.6  | Band Steering                                                                   | 1.5                |  |  |  |  |  |  |  |
| 3.3.0  | Mobility                                                                        | 7                  |  |  |  |  |  |  |  |
| 3.3.1  | Roaming with different topologies like Daisy Chain, Star with two or more nodes | 3                  |  |  |  |  |  |  |  |
| 3.3.2  | 802.11r Roaming with two or more nodes                                          | 2                  |  |  |  |  |  |  |  |
| 3.3.3  | Roaming with real application like Youtube, Teams                               | 2                  |  |  |  |  |  |  |  |
| 3.4.0  | Interoperability                                                                | 5                  |  |  |  |  |  |  |  |
| 3.4.1  | Throughput with different types of Phones/Tablets/Laptops                       | 2                  |  |  |  |  |  |  |  |
| 3.4.2  | Performance over Distance                                                       | 3                  |  |  |  |  |  |  |  |



### Anatomy of a Modern Wi-Fi Router/Access Point



# Testcases Summary



| Testbed<br>Type      | Objective                                                                                                                            | Test Cases                                                                                                                                                                                                                                            |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Basic<br>Testbeds    | Run single AP functional/Performance<br>Testing                                                                                      | <ul> <li>Client capacity/connection</li> <li>Data plane throughput</li> <li>Dual band performance</li> <li>Airtime fairness</li> </ul>                                                                                                                |
| Advanced<br>Testbeds | Full set of RF level and protocol level test cases on a single AP.                                                                   | <ul> <li>Receiver sensitivity</li> <li>Maximum connection / throughput</li> <li>Airtime fairness, rate vs range</li> <li>Spatial consistency</li> <li>Multi STA performance</li> <li>Downlink Mu-MIMO performance</li> <li>AP co-existence</li> </ul> |
| Mesh<br>Testbeds     | Full set of RF level and protocol level test cases on Mesh APs (Root + 2 Node configuration).                                        | <ul> <li>Throughput per hop, client scale</li> <li>Roaming, fail over scenarios</li> <li>Performance over distance</li> <li>Spatial consistency</li> <li>Mesh Node Patterns</li> </ul>                                                                |
| MDU<br>Testbeds      | Full set of RF level and protocol level test cases on a cluster of standalone APs in a high density/crowded environment deployments. | <ul> <li>Client scale</li> <li>Large scale roaming</li> <li>Large venue load patters</li> <li>Traffic shaping/policy</li> <li>Device profiling/analytics</li> <li>Load balancing/band steering</li> </ul>                                             |
| WiFi 6E<br>Testbeds  | 6GHz channels testing on WiFi 6E APs.                                                                                                | 6 GHz RF performance     6 GHz functional test cases     Triband Performance     2.4/5GHz performance and functional tests on 6E APs                                                                                                                  |

# Access Point Testcases



| Category                                              | Sub-Category                  | Test Cases developed for                                                                                                     |  |  |  |  |  |  |
|-------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                       | Firmware                      | Upgrades/Downgrades, AP boots/reboots, System resources                                                                      |  |  |  |  |  |  |
|                                                       | Configuration & Communication | AP provisioning, ZTP, setting up networks/channels/profiles/APs, cloud connectivity, DHCP/Radius and other services, Alarms  |  |  |  |  |  |  |
| Command and<br>Control                                | Operation Modes               | Bridge/vlan/router modes,                                                                                                    |  |  |  |  |  |  |
|                                                       | Physical & Virtual Interfaces | Basic functions of LAN/WAN/WLAN physical interfaces, indicators/LEDs, virtual interfaces (SSIDs/VLANs etc)                   |  |  |  |  |  |  |
| GUI/APIs                                              |                               | GUI settings (Read/Write), API calls (Push/Pull)                                                                             |  |  |  |  |  |  |
| BSS Capabilities                                      |                               | Basic/Extended Capabilities, Security, QoS, RRM, DFS, 802.11a/b/g/n/ac/ax/k/v/r/i/u/w settings, reg domains etc              |  |  |  |  |  |  |
|                                                       | Connectivity & Security       | Basic connectivity with all WPA/2/3 Personal/Enterprise, All EAP method, Passpoint. Captive Portal, WPS etc                  |  |  |  |  |  |  |
| Functional<br>Testina                                 | Radio Resource Management     | Load Balancing, Band Steering, Auto Channel Selection, DFS                                                                   |  |  |  |  |  |  |
| Smart WiFi  QoS & Mobility & Power Save               |                               | Role/User/Device/Network based policies, Traffic Shaping, Int Detection/Mitigation, DPI, threat detection, Location Services |  |  |  |  |  |  |
|                                                       |                               | WMM, Fast Roaming, Open Roaming, Network assisted handoff, Legacy/WMM/MIMO Power Save                                        |  |  |  |  |  |  |
| Throughput Benchmark                                  |                               | Throughout for STA Modes/MIMO types/STA counts/BW settings/Traffic Types/Direction/Packet Sizes etc                          |  |  |  |  |  |  |
|                                                       | Multiband Performance         | Single/Dual/Tri band performance                                                                                             |  |  |  |  |  |  |
| Performance<br>Testing                                | Mobility Performance          | Rate vs Range, Rate vs Antenna Orientation, Roaming Delay, Roaming performance with different security types                 |  |  |  |  |  |  |
| Radio Performance                                     |                               | Receiver Sensitivity, Transmitter Quality, Reg Domain TX power testing.                                                      |  |  |  |  |  |  |
|                                                       |                               | VOIP Performance, Youtube/OTT Video Streaming, HTTP/FTP Performance, Social Media Apps performance                           |  |  |  |  |  |  |
| Stress and                                            | Day in Life Test              | Mix of Stations/APs/SSIDs/Security Types/User Policies/Traffic/Device Load Patterns over time in a 10 hour day               |  |  |  |  |  |  |
| Endurance 48-hour Stress Test Load Patterns #1,#2, #3 |                               | Full system load across all interfaces with maximum stations/traffic run for 48 hours                                        |  |  |  |  |  |  |
|                                                       |                               | Various real world load patterns run over long durations.                                                                    |  |  |  |  |  |  |
|                                                       | Single AP SOHO                | TR-398 or similar test plan for comprehensive single SOHO AP testing, Qualification/Badge Program                            |  |  |  |  |  |  |
|                                                       | SOHO Mesh                     | Throughput Per Hop, Mesh Failover, Roaming, Load Balancing, Qualification/Badge Program                                      |  |  |  |  |  |  |
| Use Case<br>Testing                                   | Med-Enterprise Network        | Medium Size Enterprise Network Use cases, Qualification/Badge Program                                                        |  |  |  |  |  |  |
|                                                       | Multi Dweller Unit (MDU)      | MDU Test plan with clear PASS/FAIL results , Qualification/Badge Program                                                     |  |  |  |  |  |  |
|                                                       | Campus Network/ LPV           | Campus Network/Large Public Venue Test Plan/Operator Network, Qualification/Badge Program                                    |  |  |  |  |  |  |

# 802.11ac Access Point Test Plan - Overnight



### **Basic Client Connectivity**

Connect and Disconnect 20 clients each on 2.4Ghz and 5Ghz radios using Open, WPA-PSK, WPA-Enterprise methods, measure connecting times and connection drops.

### Benchmark Throughput

Run full line rate traffic with single client in 4x4 MIMO 80Mhz mode in 5GHz and 3x3 MIMO 40 Mhz in 2.4GHz. Measure and Benchmark maximum throughput.

### Full System Performance

 Load all radios and ethnet interfaces simultaneously with full line rate traffic and measure the maxium achieved system throughput

#### Roaming Performance

 Create lots of clients and connect them to the AP and then cause lots of roams across various security types and measure romaing performance

#### Reciever Sensitivity

Fix the MCS rates on the client and send traffic with same MCS rate but different transmit power values and measure receiver sensitivity at all power level. Run test at all MCS rates

#### Rate vs Range

 Measure performance over distance for various traffic types both Upstream and Downstream.



### Client Capacity

Run a throughput test with 1,2,5,10,20 and 40 clients. Repeat test on both 2.4GHz and 5GHz bands.

### Mu-MIMO

 Create 3 STAs (1x 2x2 MIMO and 2x SISO) and measure the increase in troughput when Mu-MIMO feature is enabled.

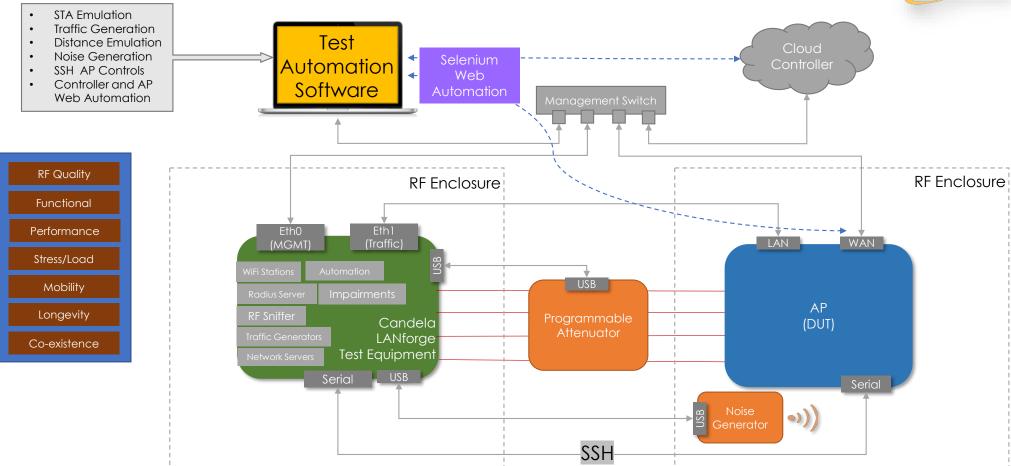
### Airtime Fairness

Connect 1x 802.11ac client and 1x 802.11n client and 1x 802.11a client, run equal amount of traffic on all three clients and see if AP distributes airtime fairly.

#### QoS Performance

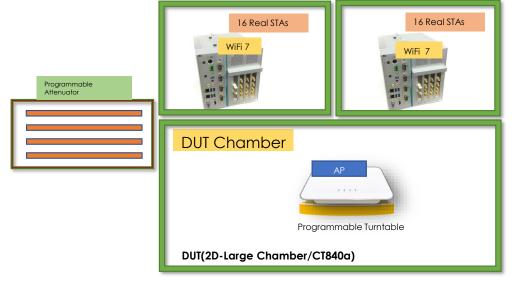
Create different voice, video and data traffic streams with different DSCP settings and WMM settings and check to make sure the AP provides better throughput to high priority traffic.

#### DFS Conformance


Generate different types of Radar Pulses and make sure the AP can detect Radar and move to a differen channel and stay off channel.

### Lond Duration Stability

 Connect lots of clients and run traffic for a 24 hour period and look for any instability in the AP performance


### WiFi Access Point Testbed Components





# WiFi7 Test cases/Features Covered (802.11be):









### Throughput Benchmark

This test gives the 6E performance with different packet sizes, channel BWs, traffic types, MIMO types.



### Client Capacity

WiFi Capacity test is designed to measure performance of an Access Point when handling several 6E WiFi Stations.



### Near/Far Clients, Band Steering

Measure the performance and stability of the 6E clients based on low and high RSSI levels



#### Wider Bandwidth -320Mhz

Supports Bandwidth upto 320Mhz



### Rate vs Range vs Orientation

This test measures the 6E performance over distance and different antenna orientation of the access point.



### 4096 QAM

4096-QAM offers the potential for extremely high data rates, it also requires a high signal-to-noise ratio (SNR) for reliable communication



#### Latency

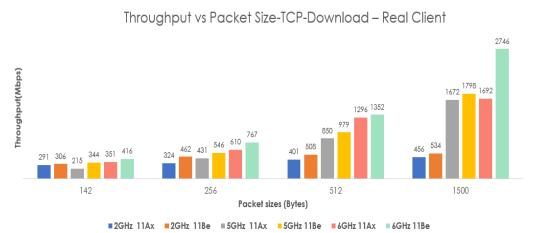
This test intends to verify latency under low, high and maximum AP traffic load with multiple stations

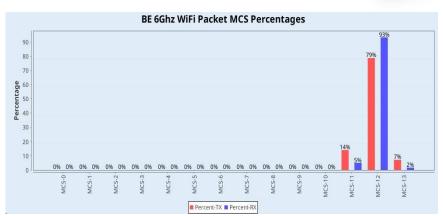


#### Airtime Fairness, QoS

Airtime Fairness Test intends to verify the capability of Wi-Fi device to ensure the fairness of airtime usage.

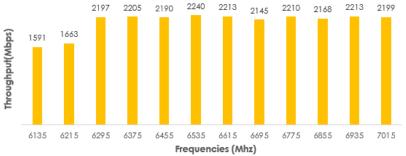



### MLO (Not Supported for now)


receive data across different frequency bands and channels.

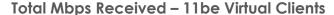
© 2023 Candela Technologies – All Rights Reserved

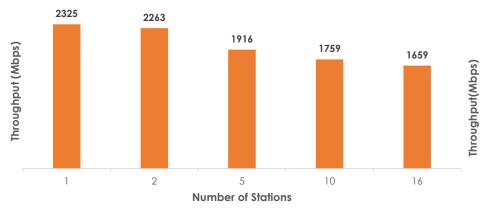
# Wi-Fi 7 Throughput Benchmarking Test:









The Candela Wi-Fi data plane test is designed to conduct an automatic testing of all combinations of station types, MIMO types, Channel Bandwidths, Traffic types, Traffic direction, Frame sizes etc.... It will run a quick throughput test at every combination of these test variables and plot all the results in a set of charts to compare performance. The user is allowed to define an intended load as a percentage of the max theoretical PHY rate for every test combination. The expected behavior is that for every test combination the achieved throughput should be at least 70% of the theoretical max PHY rate under ideal test conditions. This test provides a way to go through hundreds of combinations in a fully automated fashion and very easily find patterns and problem areas which can be further debugged using more specific testing. The below chart shows the throughput with all the 6E channels.

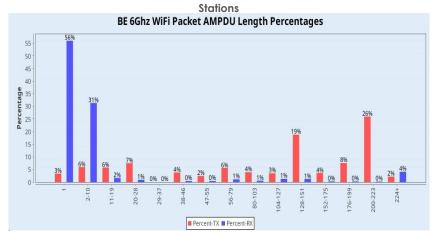






# Wi-Fi 7 Client Capacity Test

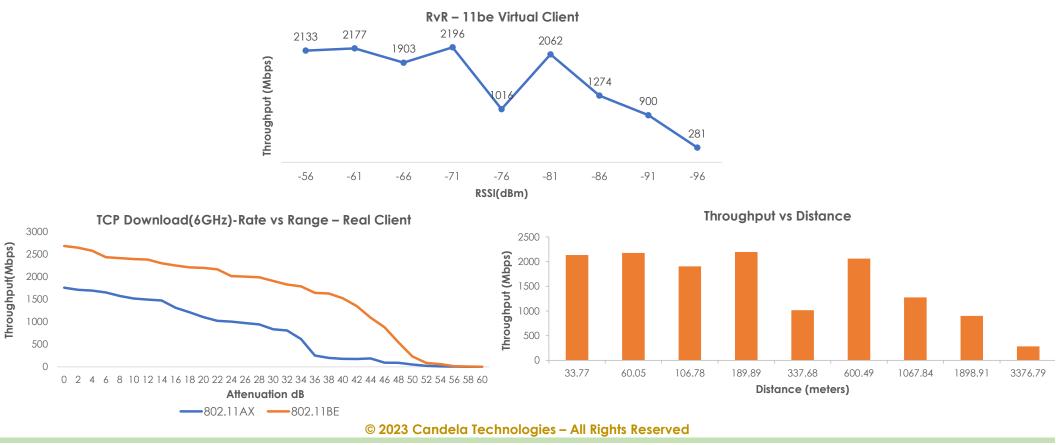







### Individual Throughput for 16-11be Clients

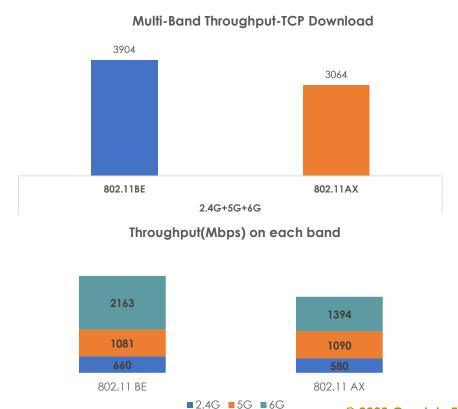


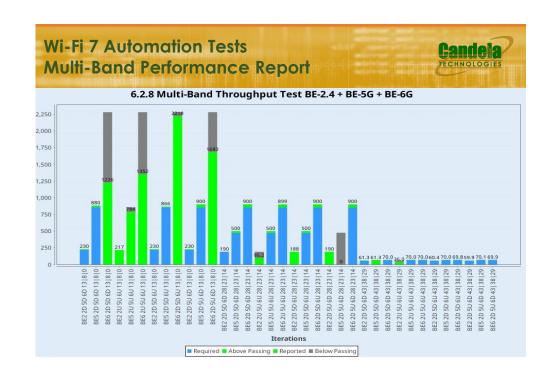

The Candela Wi-Fi Capacity test is designed to measure performance of an Access Point when handling several 6E Wi-Fi Stations. The test allows the user to increase the number of stations in user defined steps for each test iteration and measure the per station and the overall throughput for each trial. Along with throughput other measurements made are client connection times, % packet loss, DHCP times and more. The expected behavior is for the AP should be able to handle several stations (within the limitations of the AP specs) and make sure all stations get a fair amount of airtime both in the upstream and downstream.



# Wi-Fi 7 Rate vs Range Test:




This test measures the performance over distance of the Device Under Test. Distance is emulated using programmable attenuation and a throughput test is run at each distance/RSSI step and plotted on a chart. The test allows the user to plot RSSI curves both upstream and downstream for different types of traffic and different station types.

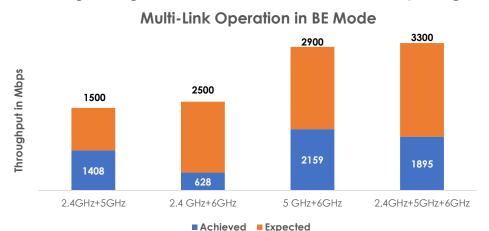



# Wi-Fi 7 Multi-Band Throughput Test:



This test creates each client on 2.4, 5 and 6Ghz bands and run the traffic simultaneously. The Multi Band Performance test intends to verify that the Wi-Fi AP throughput with multiple bands active with a single station on each band. The configured speed will be 20% higher than the passing value for MTU sized frames in the throughput test. If the throughput test was skipped, then fixed values will be used.



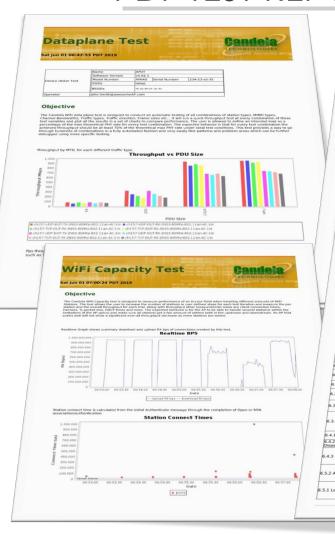


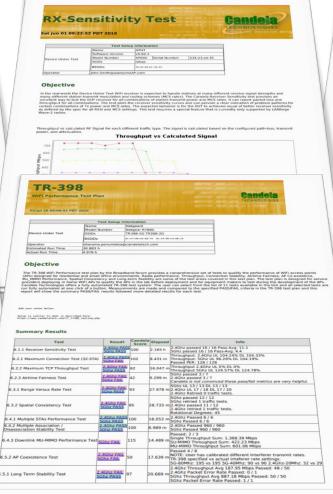

© 2023 Candela Technologies – All Rights Reserved

# Multi-Link Operation:



It enables devices to simultaneously send and receive data across different frequency bands and channels. With MLO, Wi-Fi 7 supports establishing multiple links between the Station (STA, such as your phone) and Wi-Fi access point (AP, such as your router). Connecting to the 2.4 GHz, 5 GHz, and 6 GHz bands simultaneously increases throughput, reduces latency, and improves reliability. It is ideal for emerging applications like VR/AR, online gaming, remote office, and cloud computing.





| Band                 | Client Connected | MLO Enabled | MLO Working | Mode | NSS | MCS    | Bandwidth | Channel | RSSI (dBm) | PHY-rate<br>(Mbps) | TCP-DL Throughput<br>(Mbps) | TCP-UL Throughput<br>(Mbps) |
|----------------------|------------------|-------------|-------------|------|-----|--------|-----------|---------|------------|--------------------|-----------------------------|-----------------------------|
| 2.4GHz + 5GHz        | 5GHz             | Yes         | Yes         | BE   | 2   | 13     | 160       | 36      | -30        | 2882               | 1408                        | 1324                        |
| 2.4GHZ + 6GHZ        | 2.4GHz, 6GHz     | Yes         | Yes         | BE   | 2   | 9      | 320       | 1, 37   | -19        | 1921, 3843         | 628                         | 342                         |
| 5GHz + 6GHz          | 5GHz             | Yes         | No          | BE   | 2   | 12, 11 | 320       | 36      | -29        | 5187, 4803         | 2.15 Gbps                   | 2.43 Gbps                   |
| 2.4GHz + 5GHz + 6GHz | 6GHz             | Yes         | No          | BE   | 2   | 13     | 320       | 1       | -14        | 5764               | 1.89 Gbps                   | 1.73 Gbps                   |

© 2023 Candela Technologies – All Rights Reserved

### PDF TEST REPORTS









Realtime Graph shows summary download and upload RX bps of connections created by this test

TR-398 Test Cases



6.1. RF capability

6.1.1 Receiver Sensitivity Test





6.2. Baseline Performance

6.2.1 Maximum Connection Test

6.2.2 Maximum Throughput Test

6.2.3 Airtime Fairness Test

6.2.4 Dual-band Throughput Test

6.2.5 Bidirectional Throughput Test

6.2.6 Latency under Load Test

6.2.7 Quality of Service



### 6.3. Coverage

6.3.1 Range Versus Rate Test

6.3.2 Spatial consistency test

6.3.3 802.11ax Peak Performance Test

TR-398



### 6.4. Multiple STAs Performance

6.4.1 Multiple STAs Performance Test

6.4.2 Multiple Association/Disassociation Stability Test

6.4.3 Downlink MU-MIMO Performance Test

6.4.4 Multicast Multi-Station



### 6.5. Stability/Robustness

6.5.1 Long Term Stability Test

6.5.2 AP Coexistence Test

6.5.3 Automatic Channel Selection Test



### 8.Mesh Performance

3.1.1 Mesh Backhaul RVR

8.1.2 Mesh Backhaul Node2 RVR

8.2.1 Mesh Roam Time

### TR398 Issue 4

### • 6.1. RF capability

• 6.1.1 Receiver Sensitivity Test

### • 6.2. Baseline Performance

- 6.2.1 Maximum Connection Test
- 6.2.2 Maximum Throughput Test
- 6.2.3 Airtime Fairness Test
- 6.2.4 Dual-band Throughput Test
- 6.2.5 Bidirectional Throughput Test
- 6.2.6 Latency under Load Test
- 6.2.7 Quality of Service
- 6.2.8 Muti-Band Throughput Test
- 6.2.9 OFDMA Throughput

### • 6.3. Coverage

- 6.3.1 Range Versus Rate Test
- 6.3.2 Spatial consistency test -
- 6.3.3 802.11ax Peak Performance Test

### 6.4. Multiple STAs Performance

- 6.4.1 Multiple STAs Performance Test
- 6.4.2 Multiple Association/Disassociation Stability Test
- 6.4.3 Downlink MU-MIMO Performance Test
- 6.4.4 Multicast Multi-Station
- 6.4.5 Uplink MU-MIMO Test

### • 6.5. Stability/Robustness

- 6.5.1 Long Term Stability Test
- 6.5.2 AP Coexistence Test
- 6.5.3 Automatic Channel Selection Test
- 6.5.4 Puncturing
- 6.5.5 MLO Performance Test

### • 6.6 Mesh Performance

6.6.1 Mesh Backhaul RVR 6.6.2 Mesh Backhaul Node2 RVR 6.6.3 Mesh Roam Time

### • 7.1 Parameter Accuracies

7.1.1 RSSI Accuracy

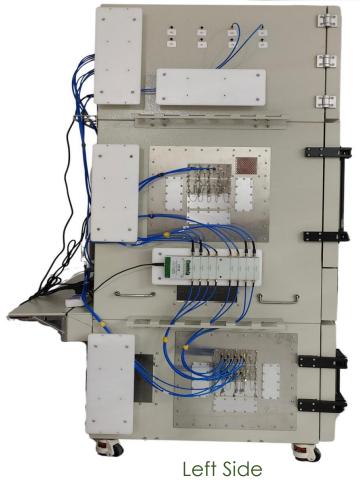
7.1.2 Channel Utilization

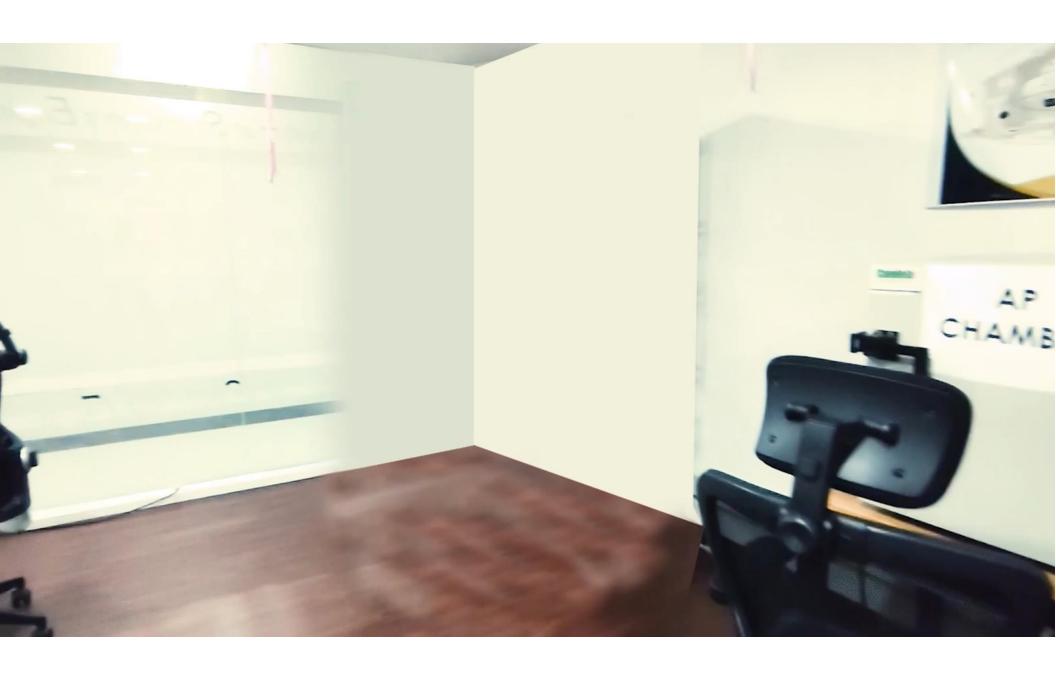




### TR-398 Issue 4 + Mesh Testbed Images







Front Side



Back Side







### TR398 Issue 4 Lanforge GUI

| 0          | TR-398 Issue 4 Automated Test (cv-inst-0) |                      |                   |                  |                    |                    |           |            |                   |           |             |           |      |            |
|------------|-------------------------------------------|----------------------|-------------------|------------------|--------------------|--------------------|-----------|------------|-------------------|-----------|-------------|-----------|------|------------|
| Lat - OFDM | A RvR                                     | Spatial - Long-Te    | AP-Coex - Po      | uncturing        | RSSI, CH-UT        | Advanced Configu   | uration   | Report     | Configuration     | TR398-    | -Issue4     | Report    | T 2K |            |
| Settings   | Virtual Sta                               | a Radio Settings     | 802.11AX Setting  | s 802.1          | 1AX Settings 2     | Mesh Settings      | Mesh Se   | ettings 2  | 2 Cal, Rx-Ser     | ns Ma     | lax-Cx, Ma  | x-Tput    | ATF  | DB, Bi-Dir |
|            | Selected [                                | OUT 5G:              |                   | be800 GF         | ber-5G 70:f2:20:   | 8f:09:41 (2)       | -         | Upst       | ream Port:        | 1.3       | 3.2 LAN     |           | -    |            |
|            | Selected [                                | OUT 2G:              |                   | be800 GF         | ber-2G 70:f2:20:   | 8f:09:39 (1)       | -         | Multi      | icast Upstream    | Port: 1.1 | 1.2 eth2    |           | ¥    |            |
|            | Selected [                                | OUT 6G:              |                   | be800 GF         | ber-6G 70:f2:20:   | 8f:09:49 (3)       | -         | Turn       | -Table-Chamber    | r: 84     | 40B-Defau   | ılt-Chamb | er 🕶 |            |
|            | 2.4Ghz 2n                                 | n RSSI               |                   | -25 (Issue       | -3 default) (-25)  |                    | -         | 5Ghz       | 2m RSSI           | -30       | 0 (Issue-2  | /3) (-30) | ¥    |            |
|            |                                           |                      |                   |                  |                    |                    |           |            |                   |           |             |           |      |            |
|            | Skip 2                                    | .4Ghz Tests          | Skip 5Ghz Tests   | Skip 6GI         | nz Tests 🔲 Sk      | ip N/AC Tests      | Skip AX T | ests [     | Skip BE Tests     | 5         |             |           |      |            |
|            | TR-398 Te                                 | sts to Run:          |                   | Estimated        | Test Duration: 8   | .717 h             |           |            |                   |           |             |           |      |            |
|            | Verify                                    | 802.11AX Radios      |                   | Verify           | Virt-Sta Radios    |                    |           | □ ∨        | erify Group Thr   | oughput   | t           |           |      |            |
|            | Calibr                                    | ate 802.11AX Atte    | nuators           | Calibra          | ite Virt-Sta Atten | uators             |           |            |                   |           |             |           |      |            |
|            | Calibra                                   | ate Mesh Sta to Ro   | oot Attenuators   | Calibra          | te Mesh Sta to N   | Node-1 Attenuators |           |            | Calibrate Mesh R  | Root to N | lode-1 Atte | enuators  |      |            |
|            | Calibra                                   | ate Mesh Sta to No   | ode-2 Attenuators | Calibra          | te Mesh Node-1     | to Node-2 Attenua  | tors      |            | Calibrate Mesh R  | Root to N | lode-2 Atte | enuators  |      |            |
|            | ☐ 6.1.1 F                                 | Receiver Sensitivity | У                 | ☐ 6.2.6 L        | atency             |                    |           | <b>V</b> 6 | i.4.2 Multiple As | soc Stab  | oility      |           |      |            |
|            | ✓ 6.2.1 N                                 | Maximum Connect      | tion              | <b>№</b> 6.2.7 C | uality of Service  |                    |           | <u> </u>   | 6.4.3 Downlink M  | IU-MIMC   | 0           |           |      |            |
|            | ✓ 6.2.2 N                                 | Maximum Through      | nput              | 6.3.1 R          | ange Versus Rat    | e                  |           | V 6        | .4.4 Multicast    |           |             |           |      |            |
|            | 6.2.3 A                                   | Airtime Fairness     |                   | 6.3.2 S          | patial Consisten   | cy                 |           | <u> </u>   | 5.5.1 Long Term   | Stability |             |           |      |            |
|            | € 6.2.4                                   | Dual-Band Through    | hput              | € 6.3.3 P        | eak Performanc     | ė                  |           | <u> </u>   | 5.5.2 AP Coexiste | ence      |             |           |      |            |
|            | ✓ 6.2.5 E                                 | Bi-Directional Thro  | oughput           | 6.4.1 N          | Iultiple STAs Per  | formance           |           | <u> </u>   | 5.5.3 Automatic ( | Channel   | Selection   |           |      |            |
|            | <b>∠</b> 6.2.8 N                          | Multi-Band Throug    | hput              | 7.1.1 R          | SSI Accuracy       |                    |           | _ 7        | 1.1.2 Channel Ut  | ilization |             |           |      |            |
|            | € 6.2.9 (                                 | OFDMA Throughpu      | ut                | 6.5.5 P          | uncturing          |                    |           |            |                   |           |             |           |      |            |
|            | ₩ 6.6.1 N                                 | Mesh Backhaul Rvi    | R                 | <b>№</b> 6.6.2 N | lesh Backhaul N    | ode-2 RvR          |           | <b>V</b> 6 | 6.6.3 Mesh Roam   | n Time    |             |           |      |            |

© 2024 Candela Technologies – All Rights Reserved

### TR-398 Issue2 Test Report



|                    | Test Setup       | Information                         |  |
|--------------------|------------------|-------------------------------------|--|
|                    | Name             | TR398-DUT-asus                      |  |
|                    | Software Version | 3.0.0.4.386_42819                   |  |
|                    | Model Number     | rIAX-88u                            |  |
| Device Under Test  | SSIDs            | asusllax-2 asusllax-5               |  |
|                    | Passwords        | hello123 hello123                   |  |
|                    | BSSIDs           | 3c:7c:3f:55:4d:60 3c:7c:3f:55:4d:64 |  |
|                    | Notes            | [BLANK]                             |  |
| Estimated Run Time | 4.583 h          |                                     |  |
| Actual Run Time    | 3.929 h          |                                     |  |

#### Objective

The IR-399-2 WFI Performance test plan by the Broadband forum provides a comprehensive set of test to qualify the performance of WFI access points (RAP) designed for residential and small office environments. Radio performance. Throughput. Connection stability, Airline Faimes, AP Co-existence, MJ\_MIMO Performance, Spatial Consistency and Long-term Stability are some of the test areas covered in this test joan. The test plan is designed for service provides deplaying in home WFIA Ps 10 april, the APs in the lab before deplayment and for equipment makes to test during the development of the APs. Condeta Technologies offers a fully automated IR-399/2 test system. The user can select from the fist of 11 test available in the GUI and all telected tests are un flay, automated and compared to the specified PASS/FAIL criteria in the IR-399/2 test plan and this report will show the summary PASS/FAIL results followed more detailed results for each test.

#### Summary Results

| Test                                      | Result                   | Candela<br>Score | Elapsed  | Info                                                                                                                                                                                                       |
|-------------------------------------------|--------------------------|------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibrate 802.11 AX Zero Attenuation RSSI | 2.4Ghz PASS<br>5Ghz PASS | 100              | 5.389 m  | Attenuator Calibration Step<br>2.4Ghz Passed 48 / 48<br>5Ghz Passed 48 / 48                                                                                                                                |
| Calibrate 802.11 AC Zero Attenuation RSSI | 2.4Ghz FAIL<br>5Ghz PASS | 95               | 5.916 m  | Attenuator Calibration Step<br>2.4Ghz Passed 44 / 48<br>5Ghz Passed 48 / 48                                                                                                                                |
| 6.1.1 Receiver Sensitivity Test           | Skipped                  | 0                | 0        |                                                                                                                                                                                                            |
| 6.2.1 Maximum Connection Test (32-STA)    | 2.4Ghz FAIL<br>5Ghz FAIL | 90               | 17.126 m | Throughput: 2.4Ghz AC UL 103.56% DL 104.07%<br>Throughput: 2.4Ghz AX UL 2.93% DL 101.93%<br>Throughput: SGhz AC UL 103.96% DL 104.36%<br>Throughput: SGhz AX UL 51.31% DL 103.29%<br>Possed PER: 245 / 256 |
| 6.2.2 Maximum TCP Throughput Test         | 2.4Ghz FAIL<br>5Ghz PASS | 118              | 9.953 m  | Throughput N 2.4Ghz UL 93.02% DL 119.07%<br>Throughput AX 2.4Ghz UL 114.48% DL 118.58%<br>Throughput AC 5Ghz UL 118.25% DL 126.77%<br>Throughput AX 5Ghz UL 130.26% DL 127.20%                             |
| 6.2.3 Airtime Fairness Test               | 2.4Ghz FAIL<br>5Ghz PASS | 89               | 16.709 m | AC SGhz passed 7 / 7<br>AX SGhz passed 7 / 7<br>N 2.4Ghz passed 7 / 7<br>AX 2.4Ghz passed 4 / 7                                                                                                            |

| 6.2.4 Dual-Band Throughput Test                               | 2.4Ghz PASS<br>5Ghz FAIL | 95 | 15.267 m | AC 12 / 12<br>2.4 AX 12 / 12<br>5Ghz AX 12 / 12                                                                                    |
|---------------------------------------------------------------|--------------------------|----|----------|------------------------------------------------------------------------------------------------------------------------------------|
| 6.2.5 Bidirectional UDP Throughput Test                       | 2.4Ghz FAIL<br>5Ghz FAIL | 8  | 40.069 m | AC 5Ghz passed 0 / 3<br>AX 5Ghz passed 0 / 3<br>N 2.4Ghz passed 0 / 3<br>AX 2.4Ghz passed 1 / 3                                    |
| 6.3.1 Range Versus Rate Test                                  | 2.4Ghz FAIL<br>5Ghz PASS | 82 | 1.217 h  | AC 5Ghz UL 14 / 14 DL 14 / 14<br>AX 5Ghz UL 14 / 14 DL 14 / 14<br>N 2.4Ghz UL 7 / 17 DL 16 / 17<br>AX 2.4Ghz UL 10 / 17 DL 11 / 17 |
| 6.3.2 Spatial Consistency Test                                | Skipped                  | 0  | 0        |                                                                                                                                    |
| 6.3.3 AX Peak Performance TCP Throughput Test                 | 2.4Ghz FAIL<br>5Ghz FAIL | 80 | 4.821 m  | Throughput AX 2.4Ghz UL 76.25% DL 79.06%<br>Throughput AX 5Ghz UL 85.05% DL 83.01%                                                 |
| 6.4.1 Multiple STAs Performance Test                          | 2.4Ghz FAIL<br>5Ghz PASS | 91 | 35.672 m | N 2.4Ghz Passed 6 / 6<br>AX 2.4Ghz Passed 4 / 6<br>AC 5Ghz Passed 6 / 6<br>AX 5Ghz Passed 6 / 6                                    |
| 6.4.2 Multiple Association /<br>Disassociation Stability Test | 2.4Ghz FAIL<br>5Ghz FAIL | 99 | 11,192 m | N 2.4Ghz Passed 723 / 728<br>AX 2.4Ghz Passed 727 / 728<br>AC 5Ghz Passed 725 / 728<br>AX 5Ghz Passed 727 / 728                    |
| 6.4.3 Downlink MU-MIMO Performance Test                       | Skipped                  | 0  | 0        |                                                                                                                                    |
| 6.5.2 AP Coexistence Test                                     | Skipped                  | 0  | 0        |                                                                                                                                    |
| 6.5.1 Long Term Stability Test                                | Skipped                  | 0  | 0        |                                                                                                                                    |

#### Calibrate 802.11AX Zero Attenuation RSSI

#### ummary

Calbrate the Zero attenuation settings for 2.4 and 5Ghz

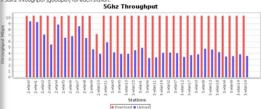
#### Test Procedure

#### These steps are done for 2.4Ghz and 5Ghz.

- Create an /a/b/g [legacy] station on each radio (or optionally some other made and NSS). Legacy made is used because it is normally sent at full to power by the AP. Higher MCS frames are often transmitted below maximum power, especially when using multiple scrately transmis.
- Set all attenuators to 0.
- Ser all attenuators to 0.
   Create download connections for each station and run them for 30 seconds.
- 4. Record Received Signal Strength (RSSI) for each station. This records a decaying average over the last few data frames received, not
- 5. Change attenuation to 8, 15, and 25 and re-run download test and record new RSSI.
- Record the zero-attenuation RSSI, based on the average over all tested attenuations, in the TR-398v2 Automation setup window.

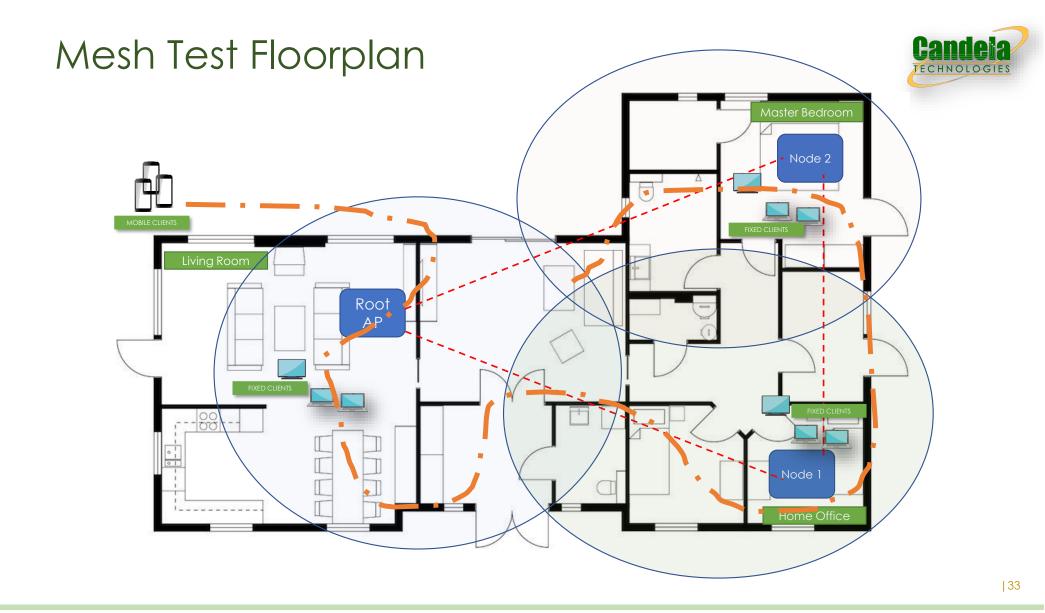
#### Pass/Fail Criteria

Ensure that relative RSSI is within 3 for each of the different attenuation values.


#### Candela Scor

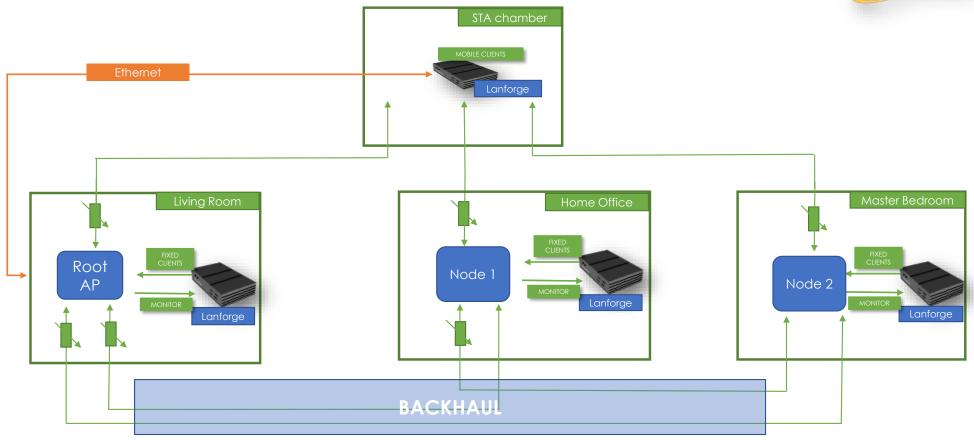
The Condella Score for Collibration Test is coloculated as the percentage of passing sub-tests, As long as the score is 80 or higher and there are no collesis in the respected signal coloculations the setup is probably working OK. Falures normally indicate a costing problem or misconfiguration, or in rare cases, a hardware failure in the afternation of Lathrage radios. RF elockage inside of LaMorge from adjacent radios




| v_udp-2.2-3.wlan2-1.0.20-B | 0 bps        | 1.182 Kbps | 32,428 | 32,428 | 2,785 | 88.235 |
|----------------------------|--------------|------------|--------|--------|-------|--------|
| v_udp-2.2-3.wlan71.0.21-A  | 21.316 Kbps  | 0 bps      | 0      | 34,906 | 0     | 0      |
| v_udp-2.2-3.wlan71.0.21-8  | 0 bps        | 787 bps    | 34.906 | 34.906 | 2.779 | 97.458 |
| v_udp-2.2-3.wlan121.0.22-A | 10.817 Kbps  | 0 bps      | 0      | 45,577 | 0     | 0      |
| v_udp-2.2-3.wlan121.0.22-B | 0 bps        | 1.379 Kbps | 45,577 | 45,577 | 4,039 | 87.273 |
| v_udp-2.2-3.wlan171.0.23-A | 52.591 Kbps  | 0 bps      | 0      | 15.215 | 0     | 0      |
| v_udp-2.2-3.wlan171.0.23-B | 0 bps        | 588 bps    | 15,215 | 15,215 | 1,569 | 97.048 |
| v_udp-2.2-3.wlan31.0.24-A  | 33.072 Kbps  | 0 bps      | 0      | 21,682 | 0     | 0      |
| v_udp-2.2-3.wlan31.0.24-8  | 0 bps        | 1.968 Kbps | 21.682 | 21.682 | 3.087 | 87.432 |
| v_udp-2.2-3.wlan81.0.25-A  | 38.71 Kbps   | 0 bps      | 0      | 19,202 | 0     | 0      |
| v_udp-2.2-3.wlan81.0.25-8  | 0 bps        | 592 bps    | 19,202 | 19,202 | 1,998 | 96.759 |
| v_udp-2.2-3.wlan131.0.26-A | 19.704 Kbps  | 0 bps      | 0      | 6.555  | 0     | 0      |
| v_udp-2.2-3.wlan131.0.26-B | 0 bps        | 394 bps    | 6,555  | 6.555  | 507   | 73.984 |
| v_udp-2.2-3.wlan181.0.27-A | 119.709 Kbps | 0 bps      | 0      | 0      | 0     | 0      |
| v_udp-2.2-3.wlan181.0.27-B | 0 bps        | 0 bps      | 0      | 0      | 0     | 100    |
| v_udp-2.2-3.wlan41.0.28-A  | 8.897 Kbps   | 0 bps      | 0      | 48.535 | 0     | 0      |
| v_udp-2.2-3.wlan41.0.28-8  | 0 bps        | 2.756 Kbps | 48,535 | 48,535 | 2,746 | 72     |
| v_udp-2.2-3.wlan91.0.29-A  | 11.035 Kbps  | 0 bps      | 0      | 20.452 | 0     | 0      |
| v_udp-2.2-3.wlan91.0.29-8  | 0 bps        | 197 bps    | 20,452 | 20,452 | 2.812 | 95.455 |
| v_udp-2.2-3.wlan141.0.30-A | 91.239 Kbps  | 0 bps      | 0      | 11,653 | 0     | 0      |
| v_udp-2.2-3.wlan141.0.30-B | 0 bps        | 4.72 Kbps  | 11.653 | 11,653 | 1.077 | 86.17  |
| v_udp-2.2-3.wlan191.0.31-A | 28.15 Kbps   | 0 bps      | 0      | 0      | 0     | 0      |
| v_udp-2.2-3.wlan191.0.31-B | 0 bps        | 0 bps      | 0      | 0      | 0     | 100    |

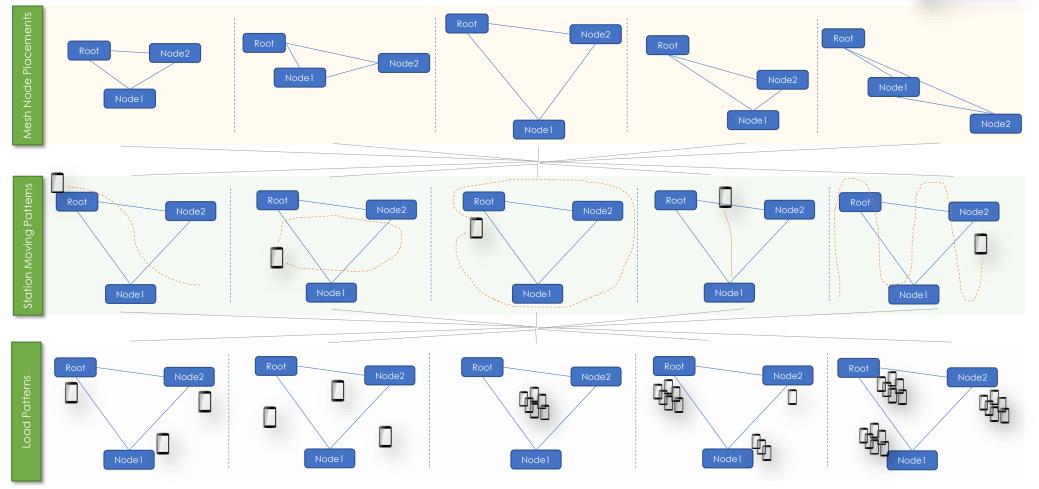
#### X 5Ghz Throughput (goodput) for each station.




Max-Cx-Test; Snapshot AX 5Ghz Download

| Port           | Tx-Bps<br>1m | RxBps<br>Im    | Tx-<br>Fal % | Tx-Link-<br>Rate | Rx-Link-<br>Rate | Mode            | Channe | Last CX-<br>Time(ms) | RSSI<br>(dBm) | AP                | IP             | MAC               |
|----------------|--------------|----------------|--------------|------------------|------------------|-----------------|--------|----------------------|---------------|-------------------|----------------|-------------------|
| .2.16<br>vian0 | 25<br>bps    | 10.625<br>Mbps | 0            | 245<br>Mbps      | 960.7<br>Mbps    | 802.11an-<br>AX | 36     | 251                  | -37           | 3C:7C:3F:55:4D:64 | 192.168.50.74  | d8:f8:83:35:db:e9 |
| .2.17<br>vian1 | 29<br>bps    | 10.641<br>Mbps | 0            | 245<br>Mbps      | 540.3<br>Mbps    | 802.11an-<br>AX | 36     | 105                  | -36           | 3C:7C:3F:55:4D:64 | 192.168.50.186 | d8:f8:83:35:ba:bf |
| .2.18<br>vlan2 | 39<br>bps    | 10.65<br>Mbps  | 0            | 245<br>Mbps      | Gbos             | 802.11an-<br>AX | 36     | 105                  | -37           | 3C:7C:3F:55:4D:64 | 192.168.50.25  | d8:f8:83:36:54:f7 |
| .2.19<br>vlan3 |              | 10.658<br>Mbps | 0            | 245<br>Mbps      | 864.8<br>Mbps    | 802.11an-<br>AX | 36     | 306                  | -38           | 3C:7C:3F:55:4D:64 | 192.168.50.131 | d8:f8:83:36:6b:d6 |
| .2.20<br>vian4 | 39<br>bps    | 10.613<br>Mbps | 0            | 245<br>Mbps      | 313.4<br>Mbps    | 802.11an-<br>AX | 36     | 419                  | -47           | 3C:7C:3F:55:4D:64 | 192.168.50.26  | a4:6b:b6:3d:61:4  |
| .2.21<br>vian5 | 29<br>bps    | 10.641<br>Mbps | 0            | 245<br>Mbps      | 480.3<br>Mbps    | 802.11an-<br>AX | 36     | 478                  | -47           | 3C:7C:3F:55:4D:64 | 192.168.50.211 | e8:14:08:21:96:84 |
| .2.22<br>viané | 33<br>bps    | 10.676<br>Mbps | 0            | 245<br>Mbps      | 1.201<br>Gbps    | 802.11an-<br>AX | 36     | 594                  | -48           | 3C:7C:3F:55:4D:64 | 192.168.50.188 | a4:6b:b6:3d:d5:e  |
| 2.23           | 29           | 10.638         |              | 245              | 960.7            | 802.11an-       |        |                      |               |                   |                |                   |




# 3 Node Testbed Example

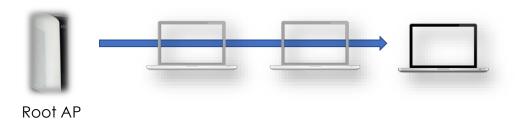


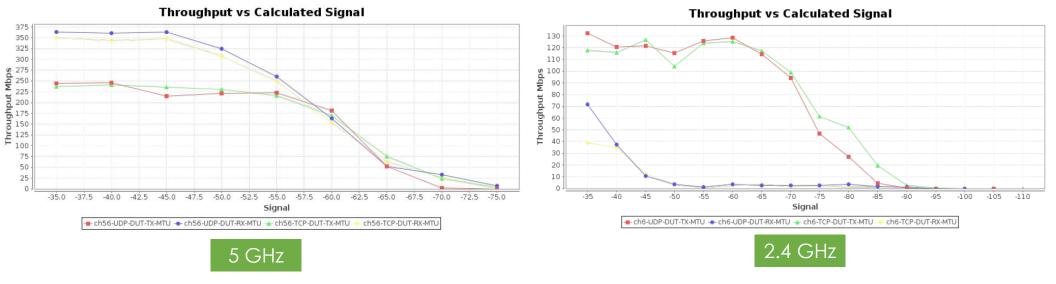


### Test Automation Variables






# Mesh Testing Results Summary




|   | Tests                                | Rating    | Tester Comments                                                                                                                                                                                                                         |
|---|--------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Dataplane Throughput of Root AP      | Average   | Low performance was measured with smaller packet size traffic and in 80Mhz modes and also in 2x2 MIMO modes.                                                                                                                            |
| 2 | Multiband Performance of Root AP     | Average   | About 40% decrease in throughput was observed in the 5Ghz when running dual concurrent tests. 2.4GHz was doing fine                                                                                                                     |
| 3 | Performance over Distance of Root AP | Good      | Downstream throughout was significantly lower but overall range was good. The range for 2.4GHz was better, as expected.                                                                                                                 |
| 4 | Long Duration Stability for Root AP  | Good      | System seems to stable and achieving good throughput over a 1 hour test run. In the middle of the test the AP downstream throughput started dropping                                                                                    |
| 5 | Mesh Client Connection Times per Hop | Excellent | Clients seem to connect just fine across all nodes with acceptable connection times. A small number of clients had long connection times                                                                                                |
| 6 | Mesh Throughput per Hop              | Poor      | A big variation in total throughout was found when tests were run with different numbers of clients on each node all running traffic at the same time. It was hard to find a specific pattern. More tests have to run in this key area. |
| 7 | Mesh Client Capacity Per Hop         | Poor      | Throughput dropped significantly when lots of clients were connected to Node1 and Node2 even though both the Nodes has good connectivity to Root AP                                                                                     |
| 8 | Mesh Roaming Performance             | Average   | The clients never roamed to Node1 and always had to connected to Node2. Lots of attempts by the clients to connect to neighboring APs have been ignored. Performance in the 2.4GHz band was a bit better than 5GHz                      |

### Root AP Throughput over Distance







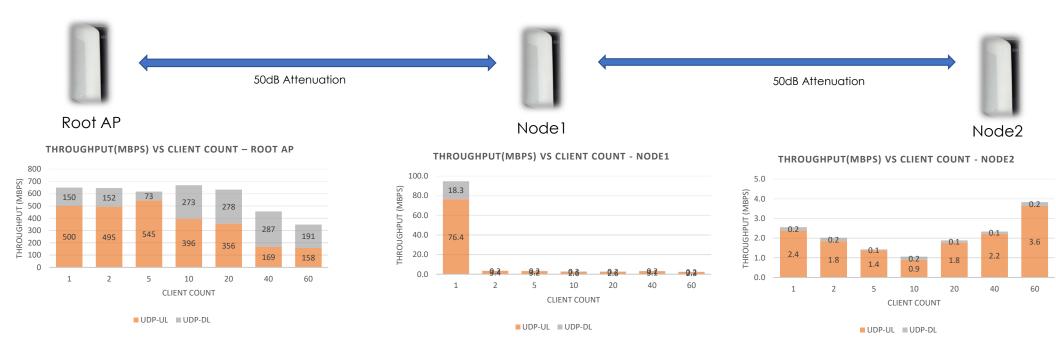
UDP/TCP, Upstream/Downstream throughput is calculated by increasing attenuation between the AP and the tester in 5dB steps programmatically.

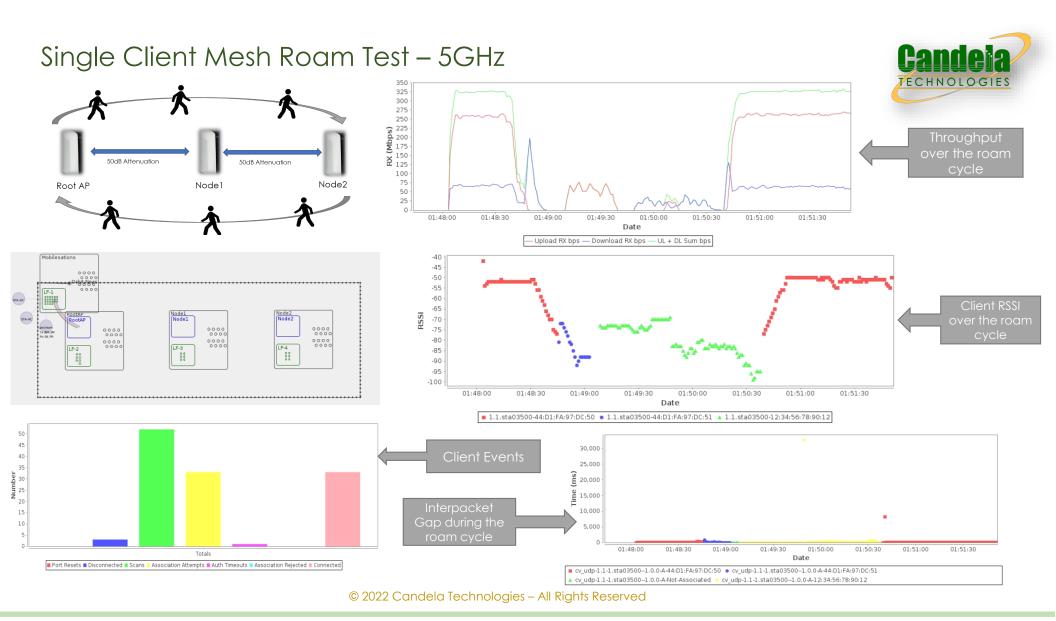
© 2022 Candela Technologies – All Rights Reserved

### Client Connectionn Times Test Per Hop 50dB Attenuation 50dB Attenuation Root AP Node1 Node2 **Station Connect Times Station Connect Times Station Connect Times** 2.4Ghz PSK • 5Ghz PSK ■ 2.4Ghz PSK • 5Ghz PSK ■ 2.4Ghz PSK • 5Ghz PSK **Port Reset Totals Port Reset Totals Port Reset Totals**

■ Port Resets ■ Disconnected ■ Scans ■ Association Attempts ■ Auth Timeouts ■ Association Rejected ■ Connected

■ Port Resets ■ Disconnected ■ Scans ■ Association Attempts ■ Auth Timeouts ■ Association Rejected ■ Connected

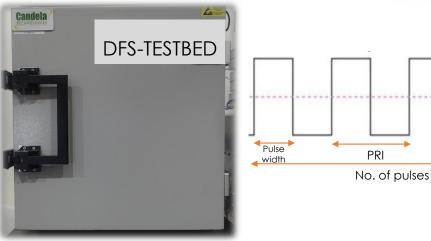

### UDP System Throughput per Hop (5GHz)




|           |             | 50dB 50dB<br>enuation Attenuat | tion        |                    |                      |                       |                      |
|-----------|-------------|--------------------------------|-------------|--------------------|----------------------|-----------------------|----------------------|
|           | Root AP     | Nodel                          | Node2       | Total UL<br>(Mbps) | Total DL<br>(Mbps)   | Total<br>(Mbps)       | % of Max<br>Achieved |
|           | 1           | 0                              | 0           | 306.5              | 296.3                | 602.8                 | 85%                  |
|           | 0           | 1                              | 0           | 27.6               | 111.4                | 139                   | 20%                  |
|           | 0           | 0                              | 1           | 0.09               | 23.3                 | 23.39                 | 3%                   |
|           | 1           | 1                              | 0           | 108.6              | 129                  | 237.6                 | 34%                  |
|           | 1           | 0                              | 1           | 108.4              | 43.7                 | 152.1                 | 22%                  |
|           | 0           | 1                              | 1           | 2.4                | 7.6                  | 10                    | 1%                   |
|           | 1           | 1                              | 1           | 109.4              | 47.3                 | 156.7                 | 22%                  |
| Number of | 5<br>0<br>0 | 0<br>5<br>0                    | 0<br>0<br>5 | 397.6<br>88<br>1.1 | 308.7<br>0.6<br>32.4 | 706.3<br>88.6<br>33.5 | 100%<br>13%<br>5%    |
| Clients   | 5           | 5                              | 0           | 491.8              | 144                  | 635.8                 | 90%                  |
|           | 5           | 0                              | 5           | 494.2              | 140.2                | 634.4                 | 90%                  |
|           | 0           | 5                              | 5           | 56                 | 31.7                 | 87.7                  | 12%                  |
|           | 5           | 5                              | 5           | 498.1              | 99.1                 | 597.2                 | 85%                  |
|           | 10          | 0                              | 0           | 366.8              | 199.1                | 565.9                 | 80%                  |
|           | 0           | 10                             | 0           | 137.3              | 3.3                  | 140.6                 | 20%                  |
|           | 0           | 0                              | 10          | 0.04               | 0.427                | 0.467                 | 0%                   |
|           | 10          | 10                             | 0           | 388.3              | 189.3                | 577.6                 | 82%                  |
|           | 10          | 0                              | 10          | 490.1              | 90.3                 | 580.4                 | 82%                  |
|           | 0           | 10                             | 10          | 11.868             | 32                   | 43.868                | 6%                   |
|           | 10          | 10                             | 10          | 496.6              | 87.5                 | 584.1                 | 83%                  |

#### Client Capacity Test Per Hop (5GHz)

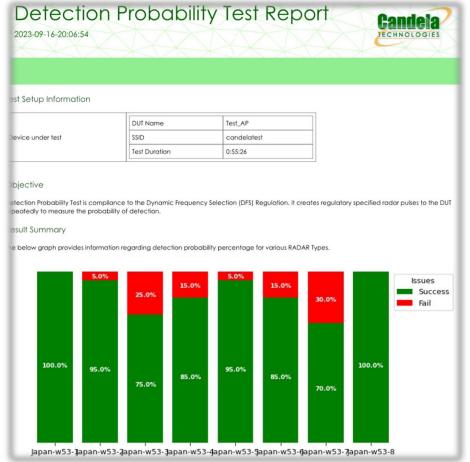







# **DFS** Testbed Images



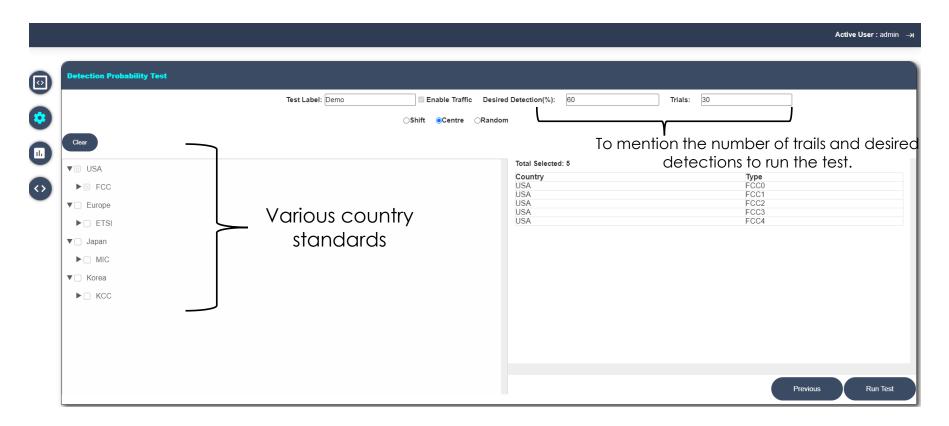





- ➤ We can generate various radar signals using an RF generator by adjusting the radar parameters.
- We can perform below test cases using candela LANforge
  - 1. The detection probability test
  - 2. The detection Bandwidth test

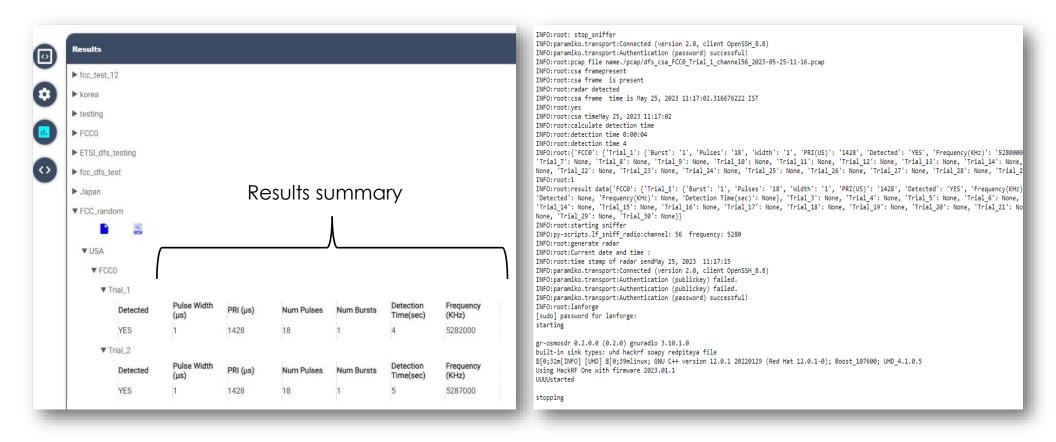


#### Sample Test Reports:



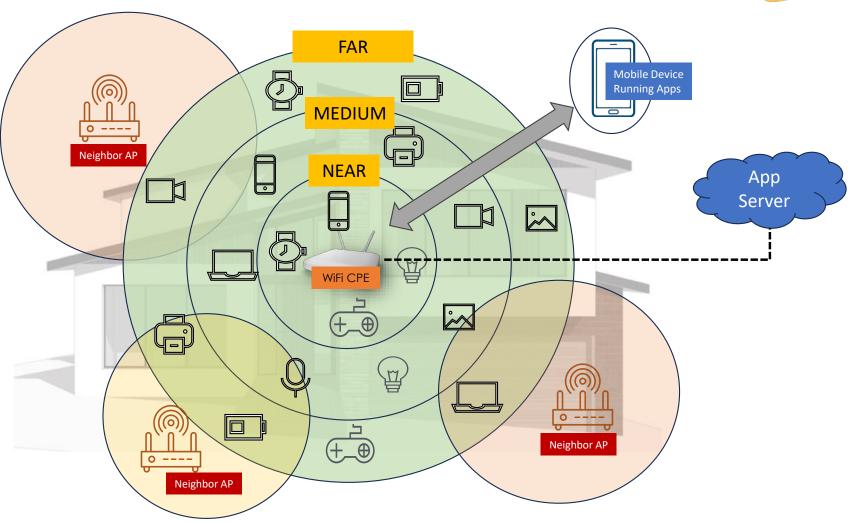

### Detection Bandwidth Test Report 2023-09-16-02:17:16 est Setup Information DUT Name NXP\_AP SSID None Device under test Test Duration 1:11:07 etection Probability Test is compilance to the Dynamic Frequency Selection (DFS) Regulation, The purpose of this test is to subject the DUT to a Type 0 C radar pulsewhile moving the frequency of the radar signal through the channel to characterized range of frequencies over which the DUT can esult Summary e below graph provides information regarding detection probability percentage for various RADAR Types.

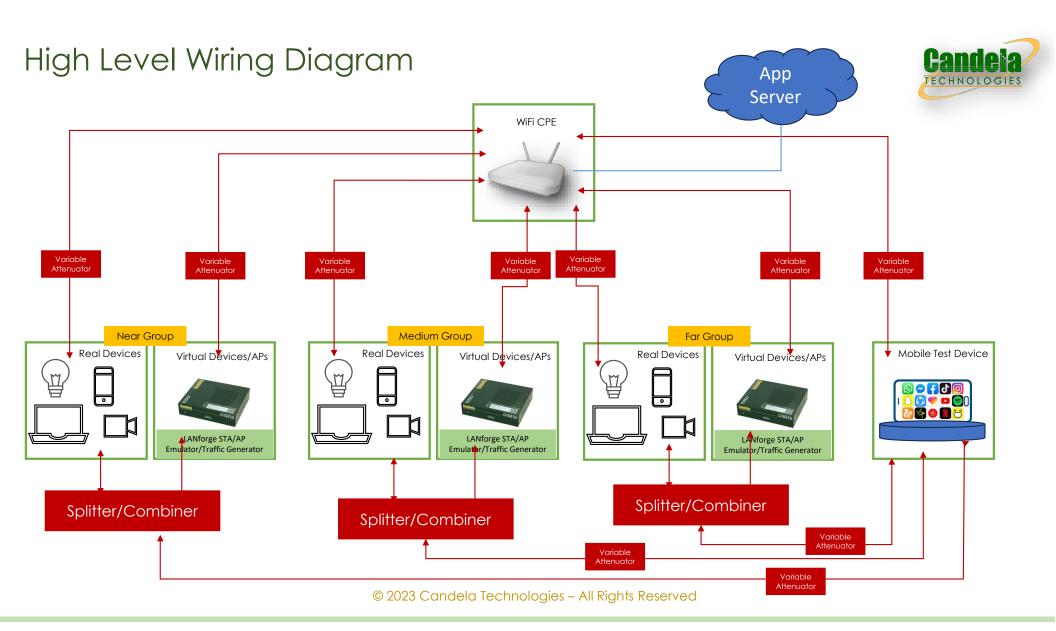



#### DFS Web-UI:

DFS Web-UI has been designed to execute a wide range of test cases based on various country standards with just a single click, ensuring a user-friendly experience.








## Home in a Box Testbed Topology – Single CPE:







### Home-in-a-Box Testbed Setup





© 2023 Candela Technologies – All Rights Reserved























# Networks in a Box



Home in a Box



Office in a Box



Hospital in a Box



Stadium in a Box







#### Select scenario



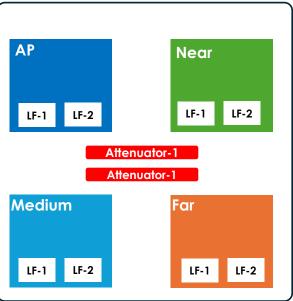
Simple Home

Condo

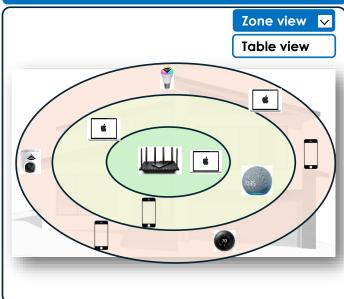
Multi-level

**VILLA** 

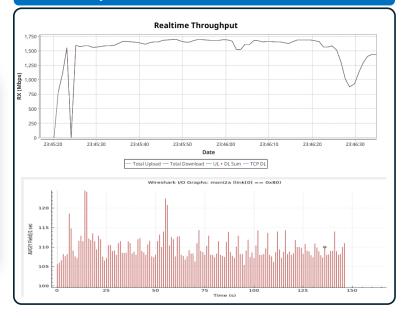
**Select DUT** 


NETGEAR ■

Duration


1 hour ✓

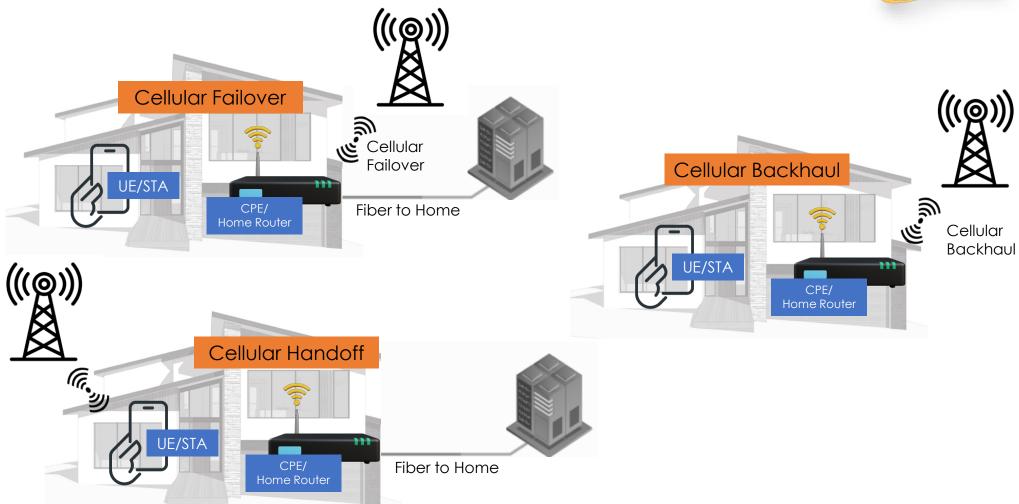
**RUN TEST** 

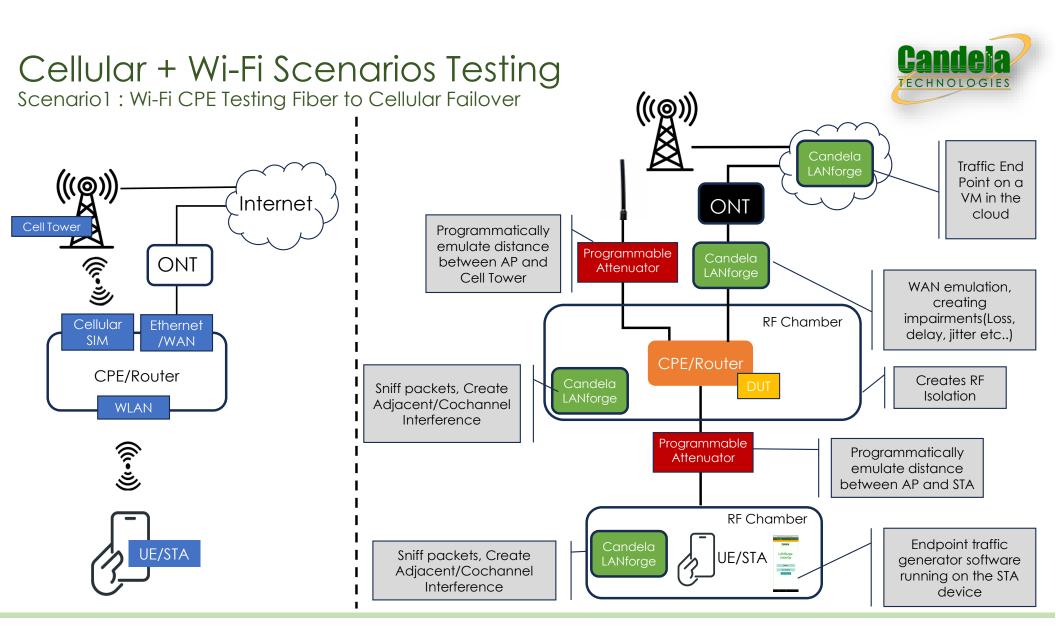


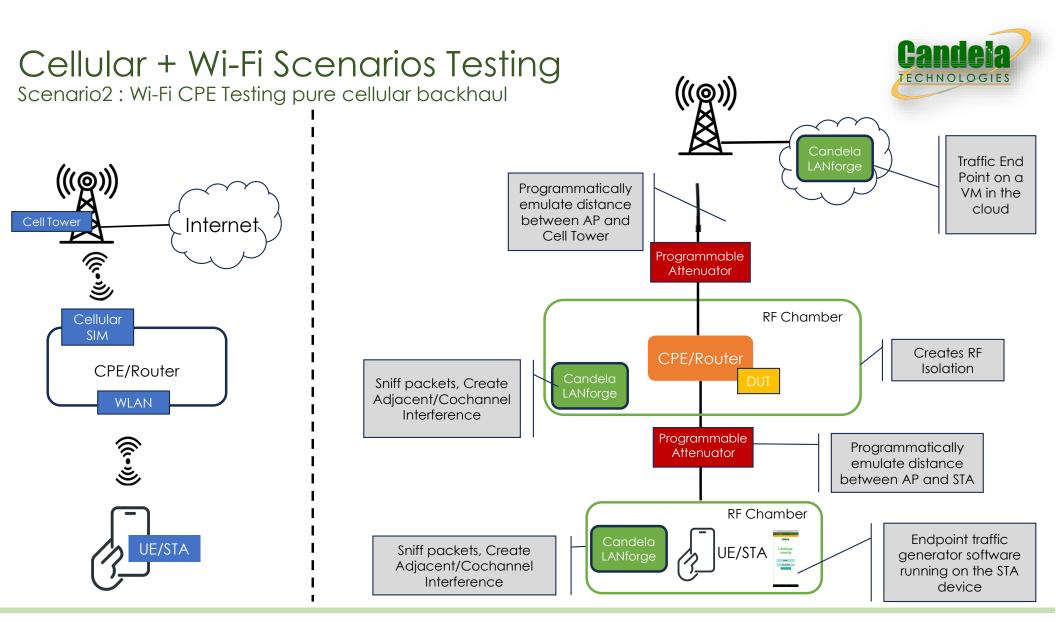



#### **Client status**



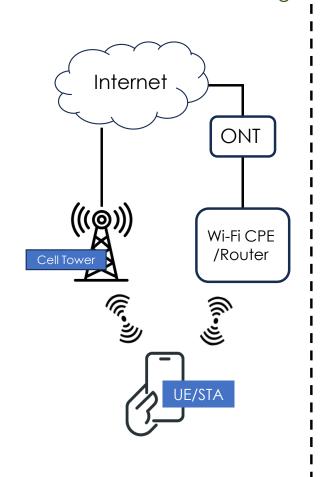

#### **Client Report**

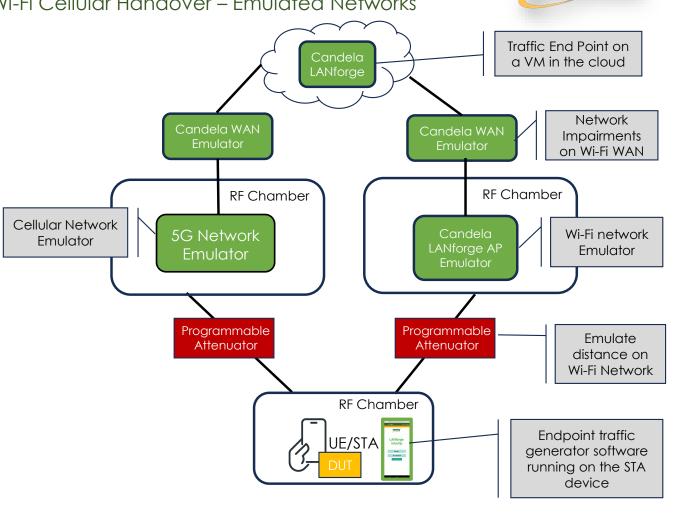



# Cellular + Wi-Fi Scenarios Testing



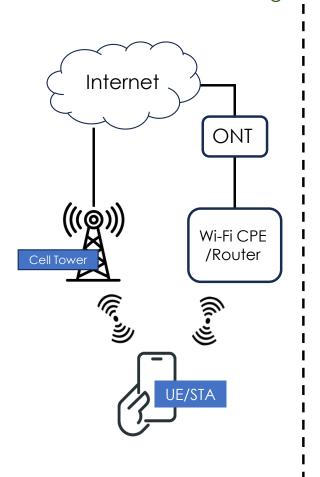


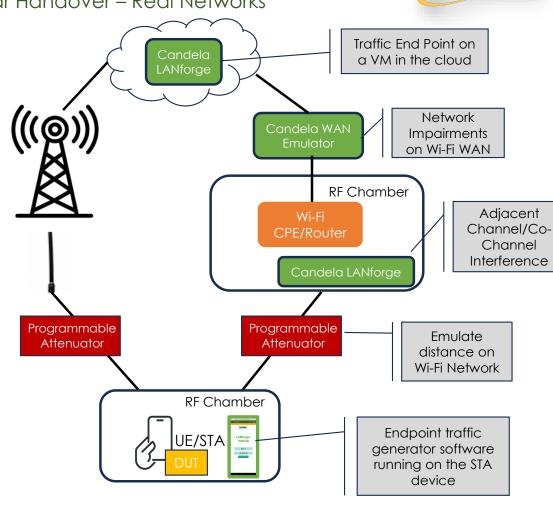






# Cellular + Wi-Fi Scenarios Testing

Scenario3a: Wi-Fi STA/UE Testing for Wi-Fi Cellular Handover – Emulated Networks




# Cellular + Wi-Fi Scenarios Testing









## Key Tests and Measurements



- End to End User Experience for Voice, Video and Data.
- CPE/Router Failover time and its effect on User Experience
- UE Handoff time between Cellular and Wi-Fi
- UE Handoff process (decision, initiation, execution) and its effects on user experience
- Performance over Distance for both access links and backhaul links when Wi-Fi is access and Cellular is backhaul.
- Connection time, security, seamless authentication, Open Roaming, Hotspot 2.0
- VolTE over Wi-Fi testing.
- End to end call quality over Wi-Fi and cellular and during handover.

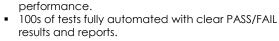
# Candela Test Offerings



- Complete CI/CD Automation provides.
- Full automation to fetch and load builds on DUT, find the reserve testbeds, fetch and run test jobs, gather and analyze test results, export to result visualization tools.
- Integration with tools and platforms like Jenkins, Jira, GitHub, Testrail etc..
- Create 100s of fully automated test scripts that can automate both Tester and DUT controls.
- Create custom test reports and results comparisons across various DUT models and firmware versions.

From Basic Manual
Functional Testing to Full
Lights Out CI/CD
Automation and
Everything in Between.






Automation of both Tester and DUT

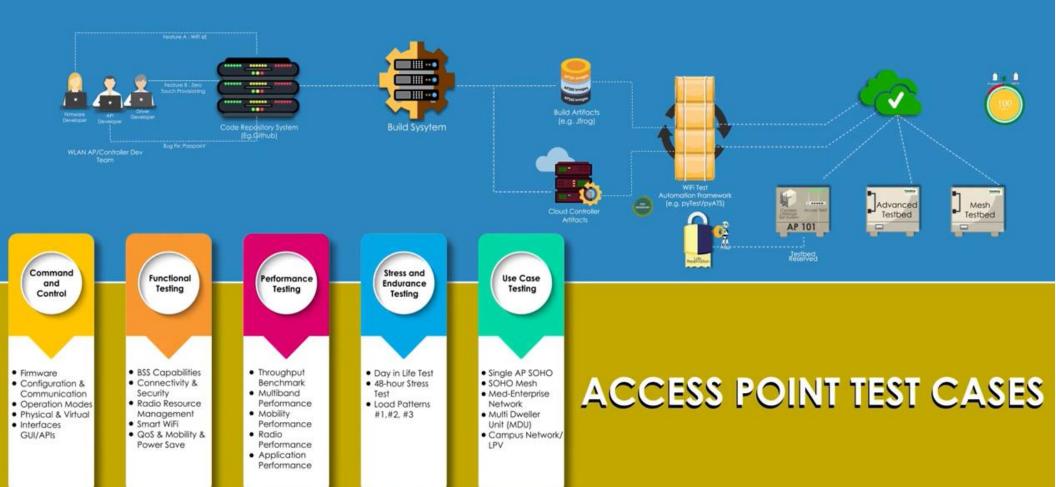








Functional


Testina

• Full automated testplans like TR-398, Mesh, AP

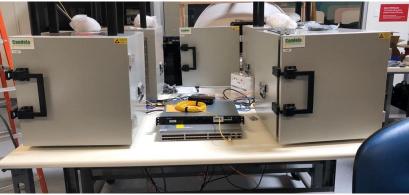
- Tests that cover various aspects of AP performance, stress, scale, real world scenarios and long term stability
- GUI based automated tests with test reports.
  - Unit testing
  - Test basic AP functions like connectivity, security, QoS, OFDMA, Mu-MIMO etc..
  - Fully flexible GUI to create any type of test scenarios
  - Ideal for Developer and early stage dev testing.

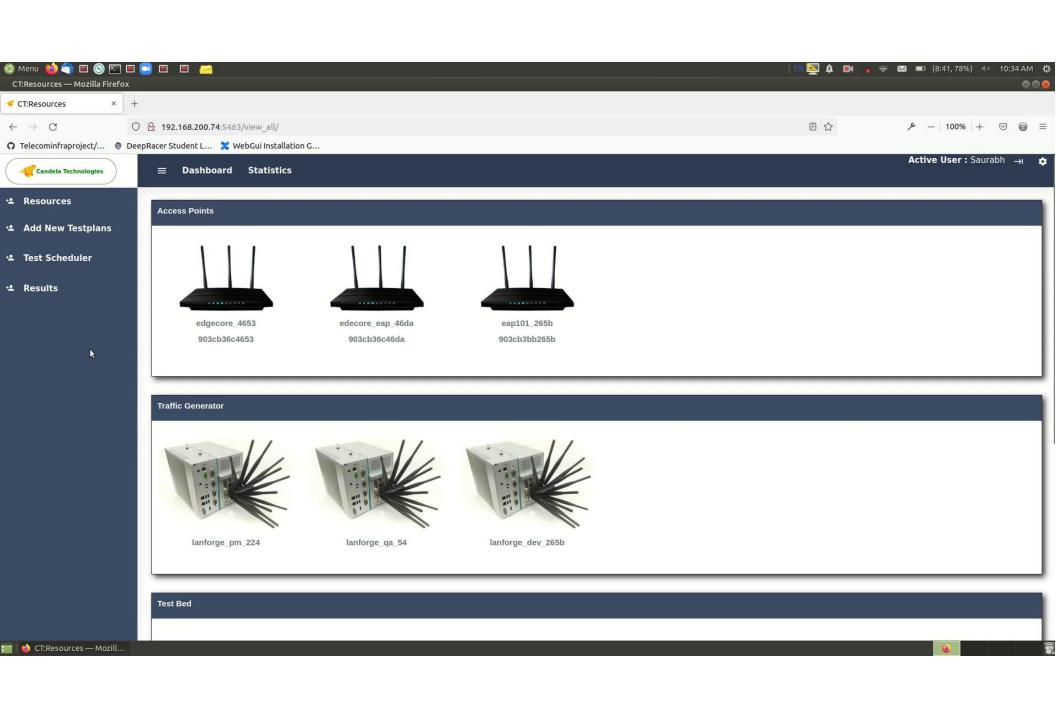


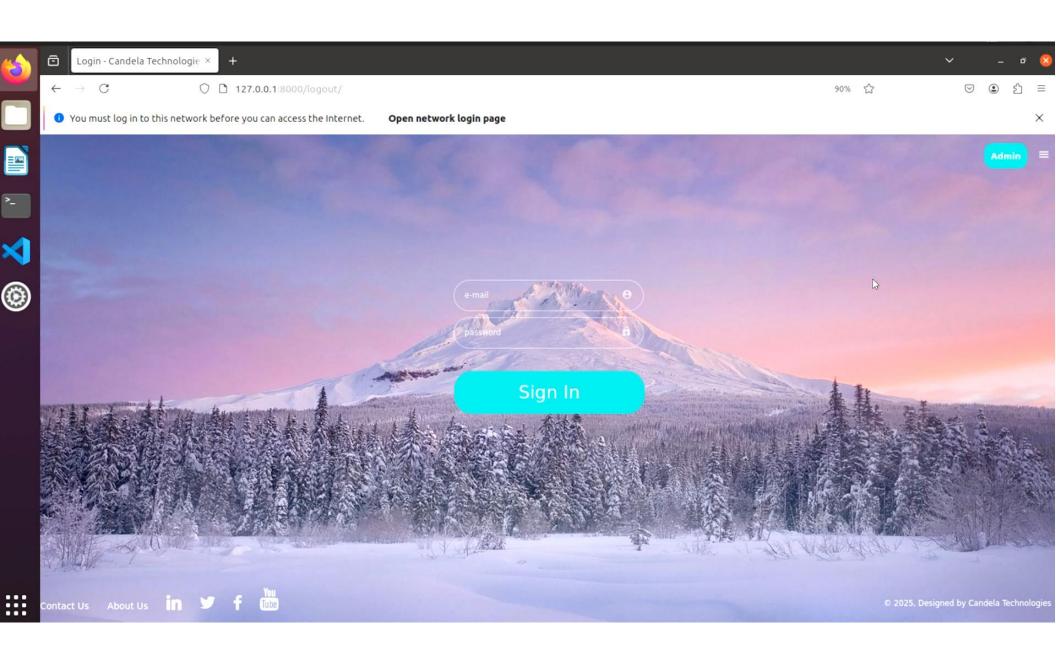
# WiFi CI/CD Test Automation Framework



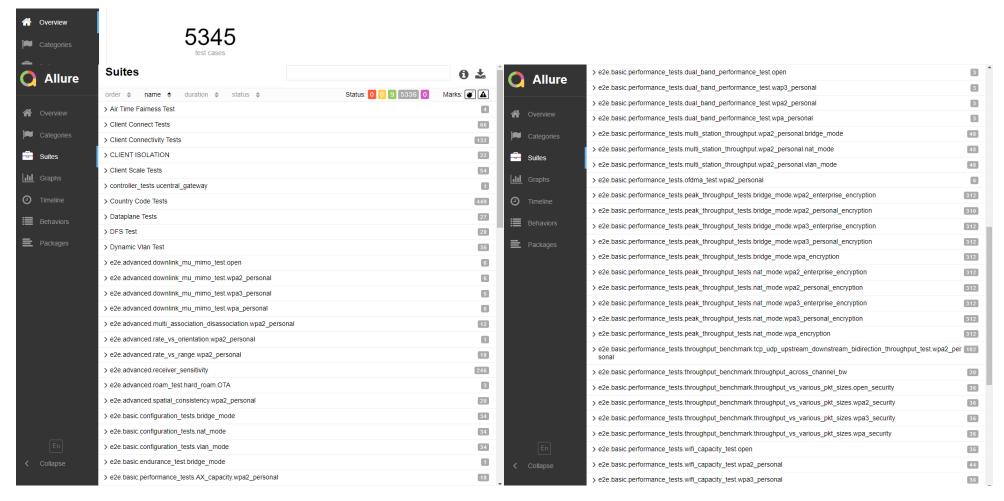



# Community Lab setup in California

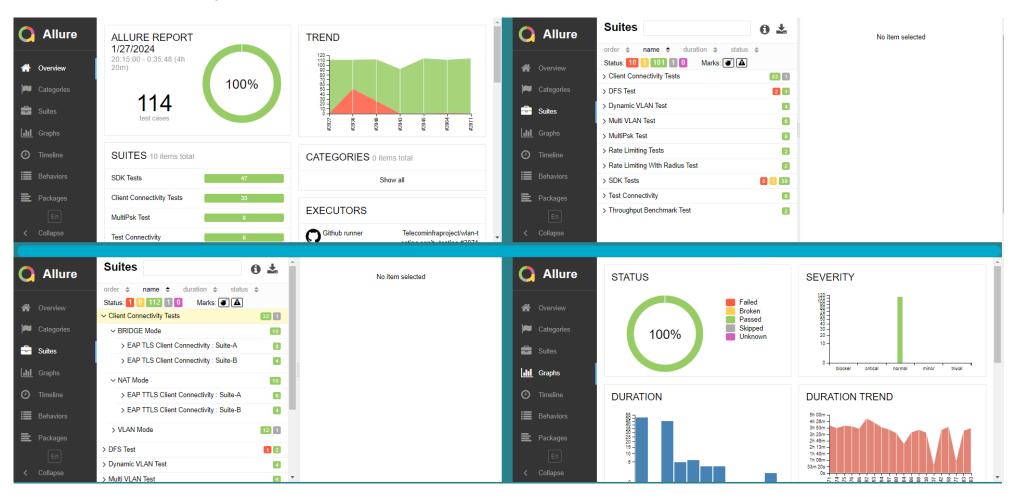









#### 5000+ Automated Testcases



### Results and Report Visualization



### The 3-approaches for AP/Router Testing





Lab Testing with Virtual Devices

Repeatability:

Scalability:

Automation:

Realism:



Lab Testing with Real Devices

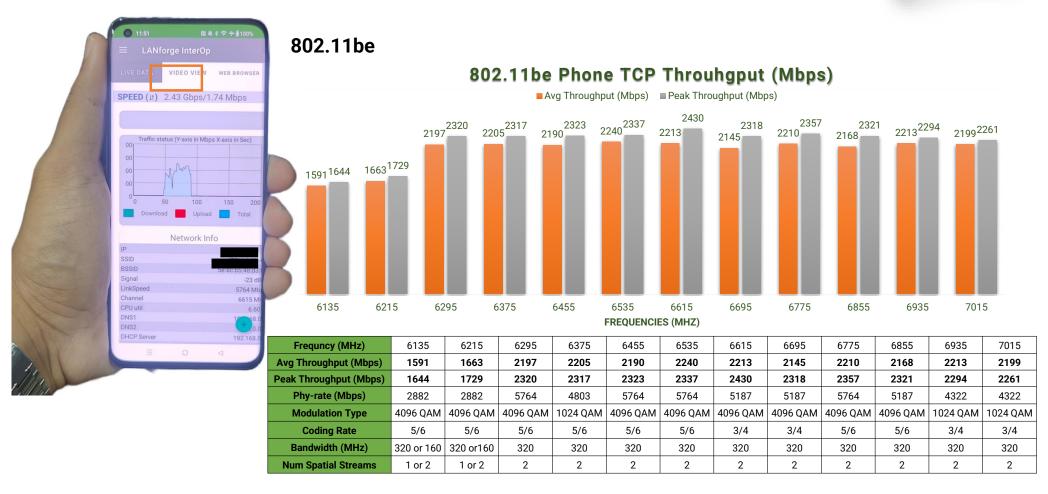
Repeatability:

Scalability:

Automation:

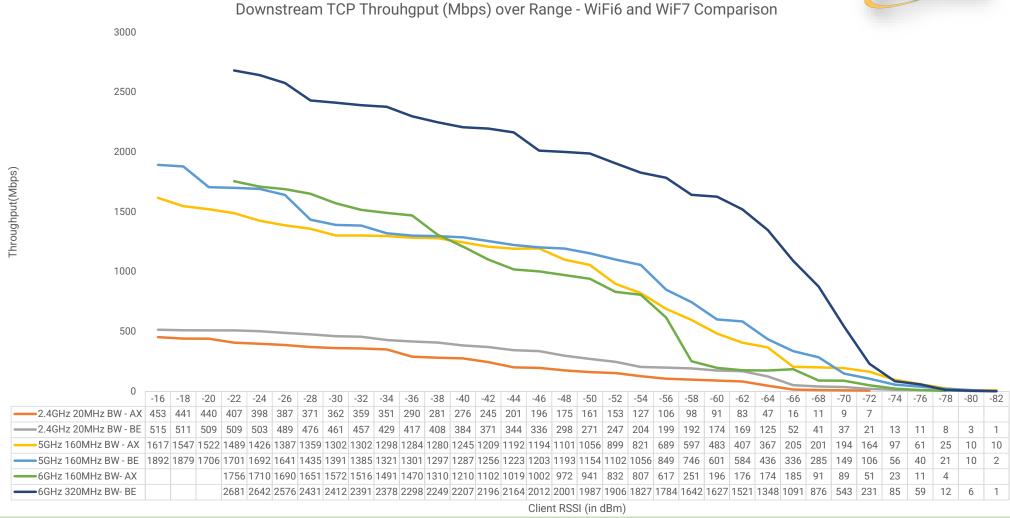
Realism:

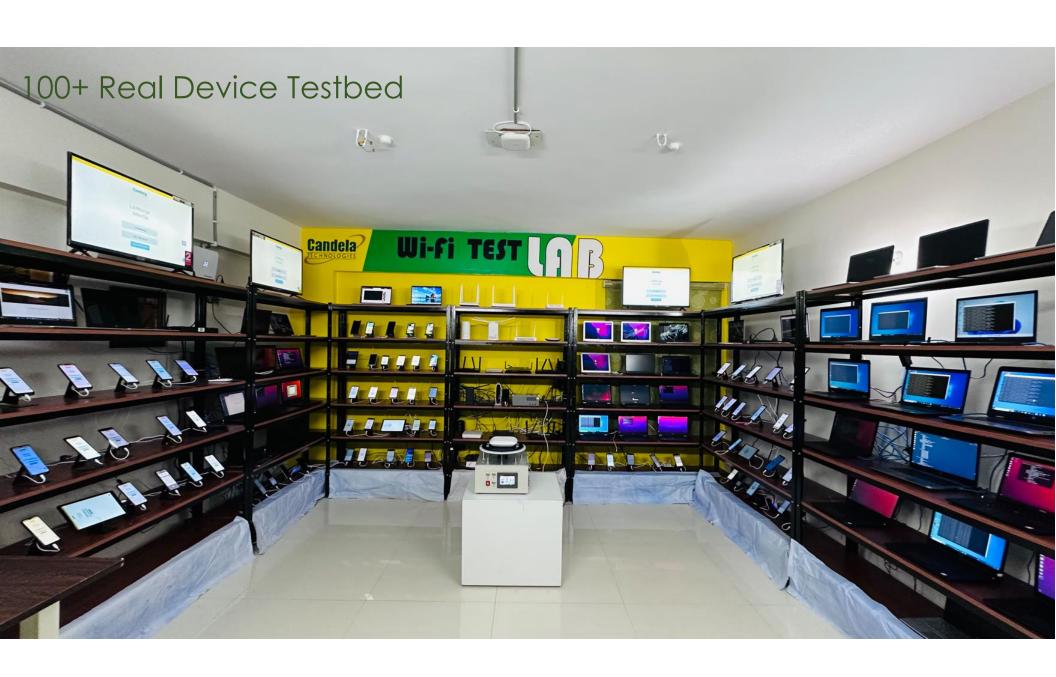



Real world Testing in Test House

| Repeatability | : |  |
|---------------|---|--|
| Scalability   | : |  |
| Automation    | : |  |

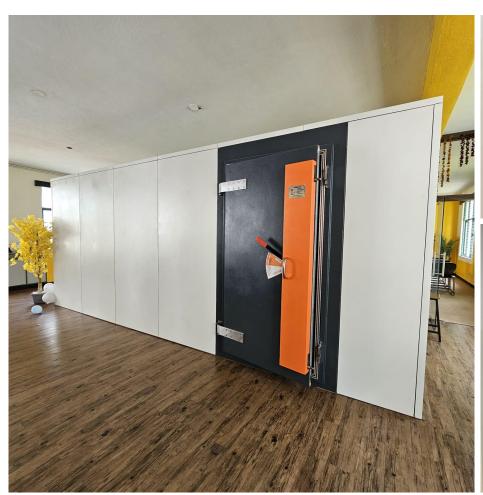
Realism


# Throughput across 6GHz Channels






## Rate vs Range Test

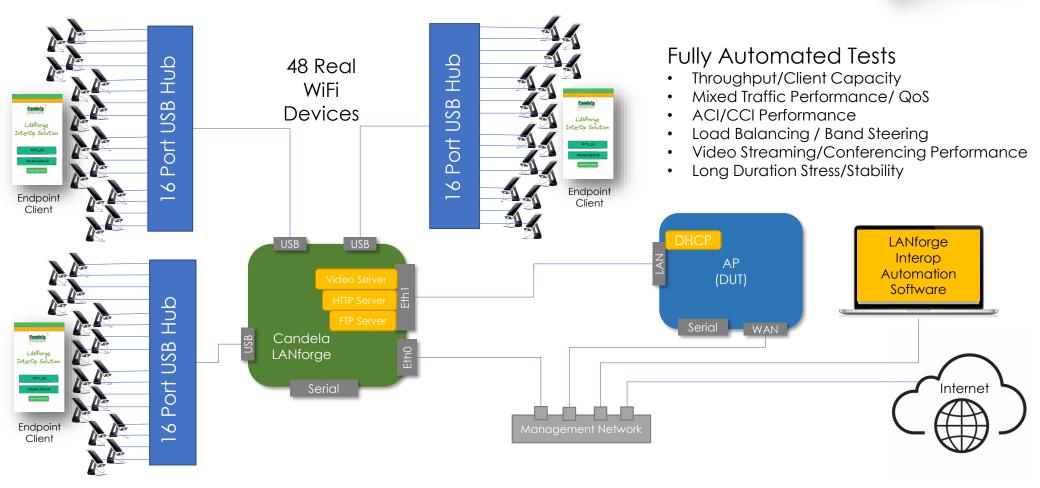






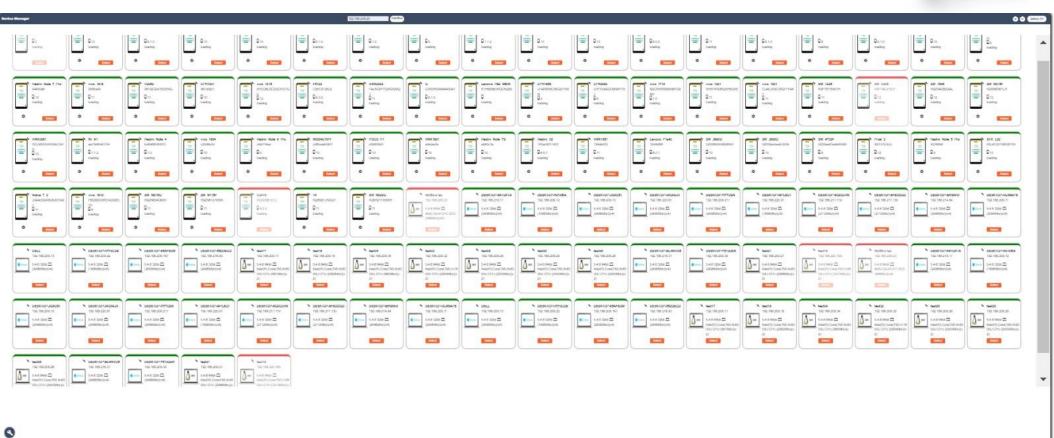

#### Large Walk-in Chamber with 100+ Real Devices

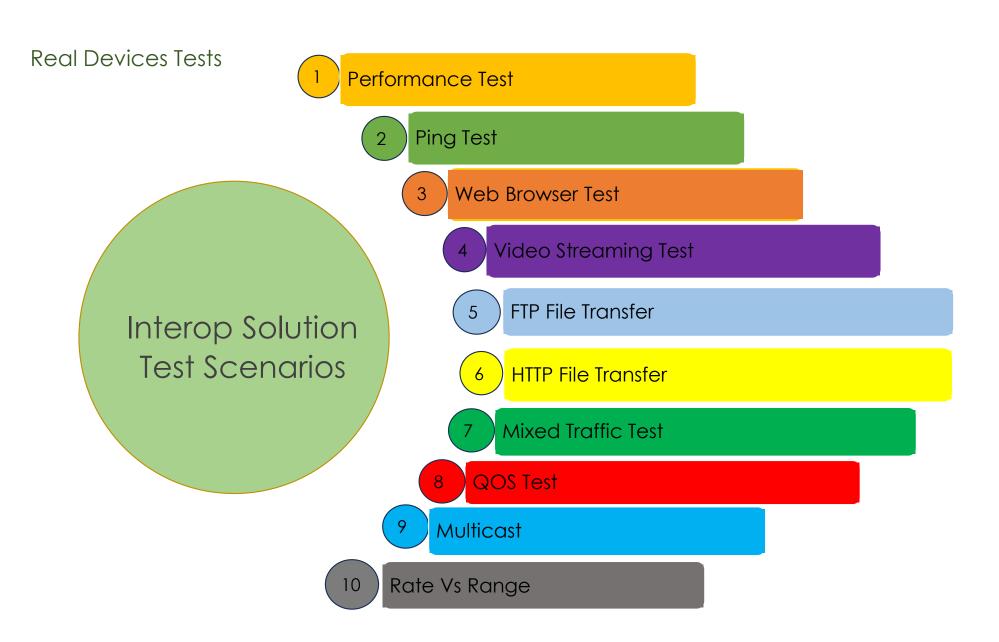




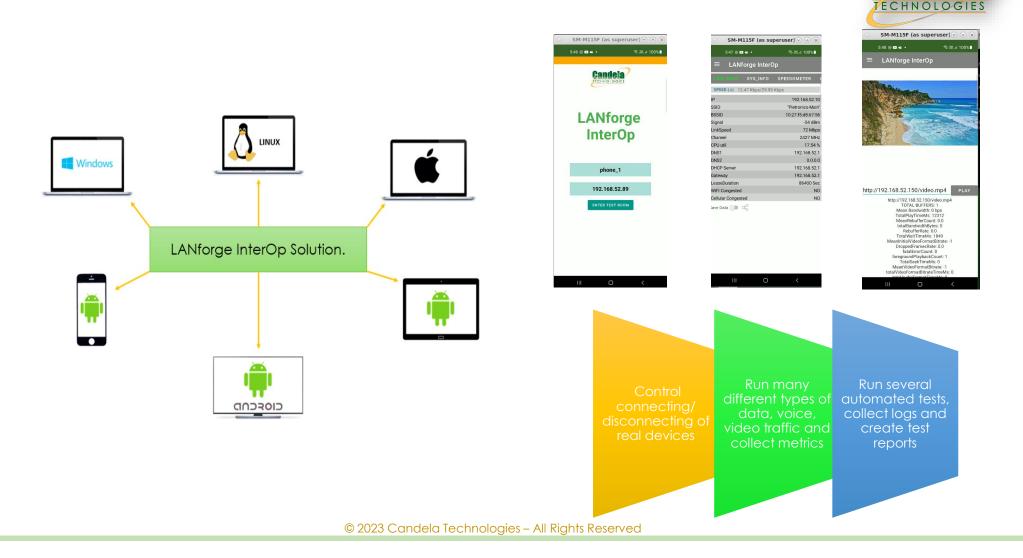




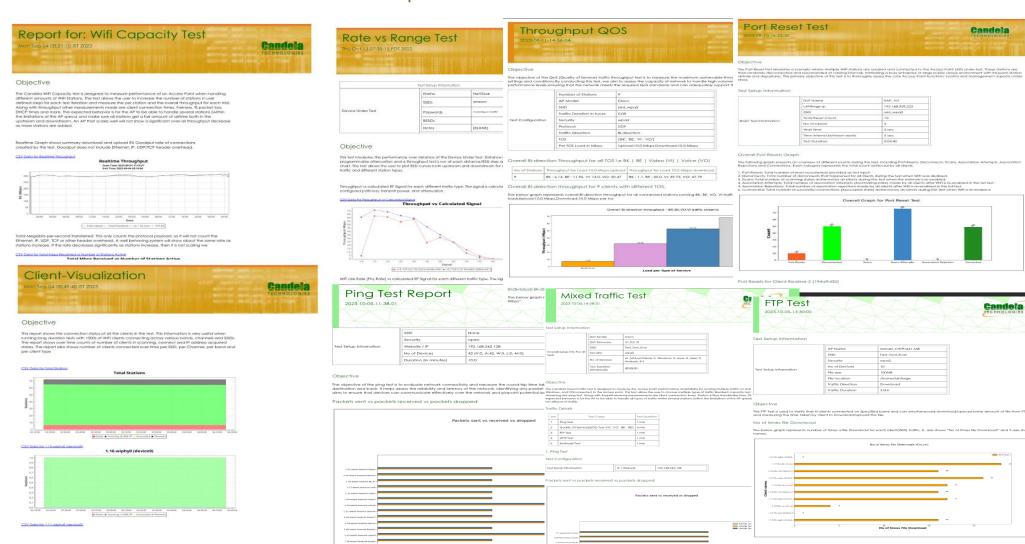


#### Interop Scale Testbed Topology





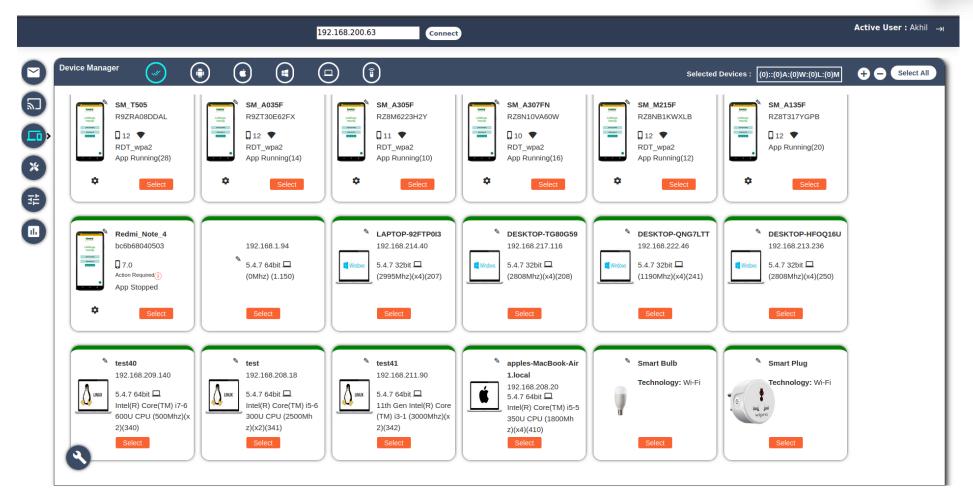


#### **Devices Dashboard**








#### Lanforge Interop Solution to test Real devices




#### Manual and Automated Test Reports



### Candela's IOT automation Dashboard:





# Large IOT Chamber





## Testbed Images



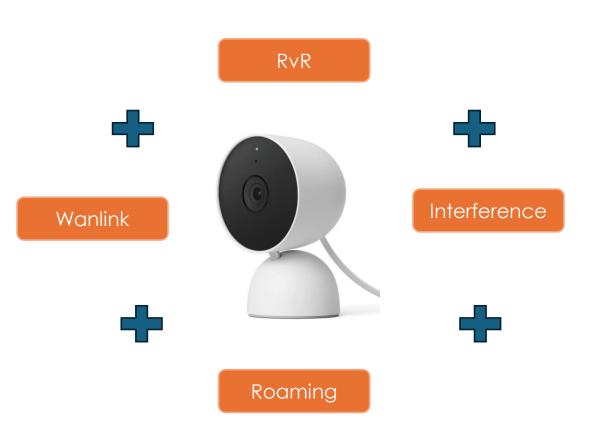




© 2024 Candela Technologies – All Rights Reserved

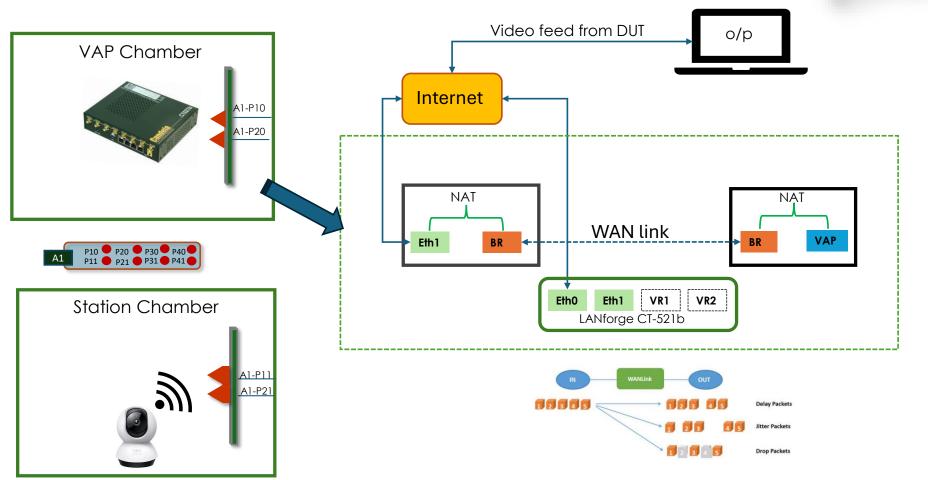
#### List of Tests Executed




#### **DUT Specifications**

Google Nest 1080p Cam (Wired) - 2nd Generation - Snow

| Spec          | Description                                                                                                                |
|---------------|----------------------------------------------------------------------------------------------------------------------------|
| Wireless      | 802.11a/b/g/n/ac (2.4GHz/5GHz) Wi-Fi<br>WEP, WPA, WPA2, WPA3 encryption supported<br>Bluetooth Low Energy (BLE) NSS-1X1    |
| Camera sensor | 2- mega pixel color sensor                                                                                                 |
| Zoom_         | 6x digital zoom_                                                                                                           |
| Video         | Up to 1080p (1920 x 1080) at 30 frames/sec<br>24/7 live view<br>High Dynamic Range (HDR)<br>Night vision<br>H.264 encoding |
| Security      | Automatic security updates 128-bit AES encryption with TLS/SSL 2-step verification available                               |


#### Tests:

- ✓ Long duration stress/stability, MTBF
- Connection times/failures.
- Motion Detection testing and testing other triggers.
  Medium Streaming Performance and overall system performance in:
  - ✓ Baseline ideal conditions
  - ✓ Over distance
  - With WiFi interference
  - ✓ With non-WiFi Interference



### 1. Testcase (WANlink Toplogy)





© 2024 Candela Technologies – All Rights Reserved

#### Video Observations



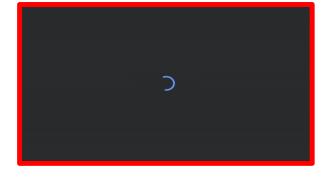


WAN link -10Mbps (Excellent)



WAN link -5Mbps(Excellent)




WAN link -2Mbps(Excellent)



WAN link - 500Kbps(Average)

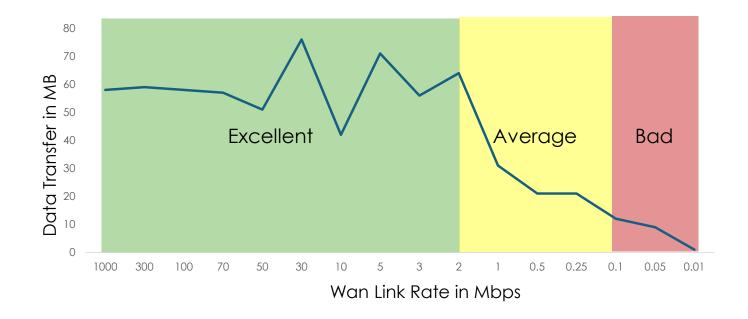


WAN link - 250Kbps(Bad)



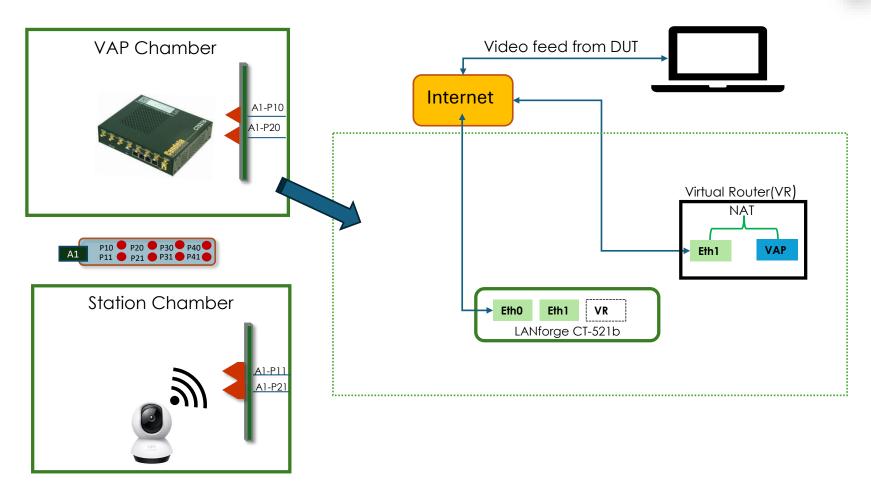
WAN link - 10Kbps(Bad)

#### Wan Link Rate vs Achieved Throughput (STA to VAP)






The DUT transmitted the data without packet drops till 2Mbps and the video log at monitoring device is excellent without any buffers. As the link rate at WAN is restricted between 2Mbps and 250Kbps, there is noticeable buffers. As the link rate is further restricted beyond 250Kbps, the video is unusable with complete buffering


## Wan Link Rate vs Data transferred (STA to VAP)





## 2. Tesstcase (Rate vs Range)





© 2024 Candela Technologies – All Rights Reserved

#### Video Observations



Attenuation 0dB (Excellent)



Attenuation 30dB (Excellent)



Attenuation 60dB (Average)

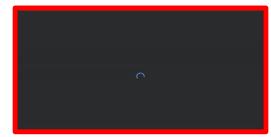


Attenuation 10dB (Excellent)



Attenuation 40dB (Excellent)




Attenuation 70dB (Bad)



Attenuation 20dB (Excellent)



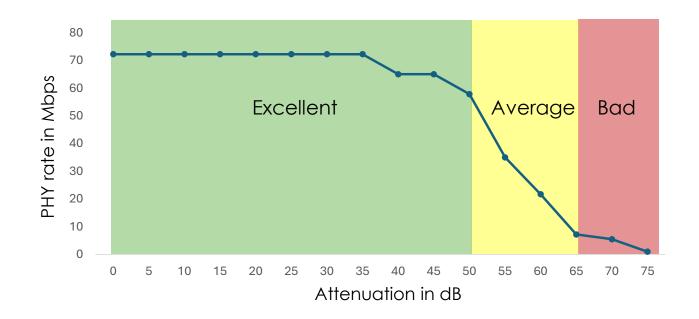
Attenuation 50dB (Average)



Attenuation 80dB (Bad)

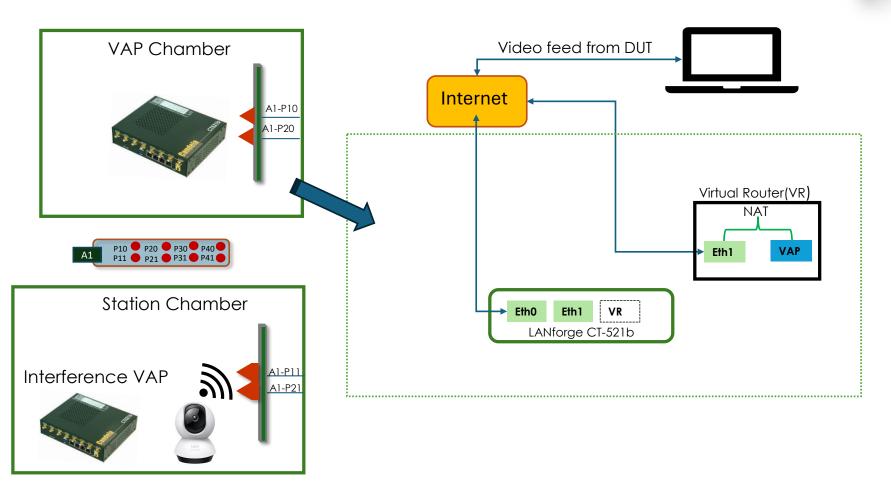
© 2024 Candela Technologies – All Rights Reserved

#### Attenuation vs Achieved Throughput (STA to VAP)






User can have good experience till 50dB attenuation, post that there is a decline in throughput




## Attenuation vs Data rate(STA to VAP)



## 3. Testcase (Interference)

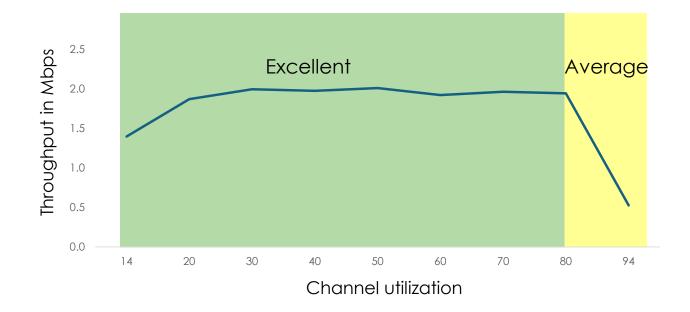




© 2024 Candela Technologies – All Rights Reserved

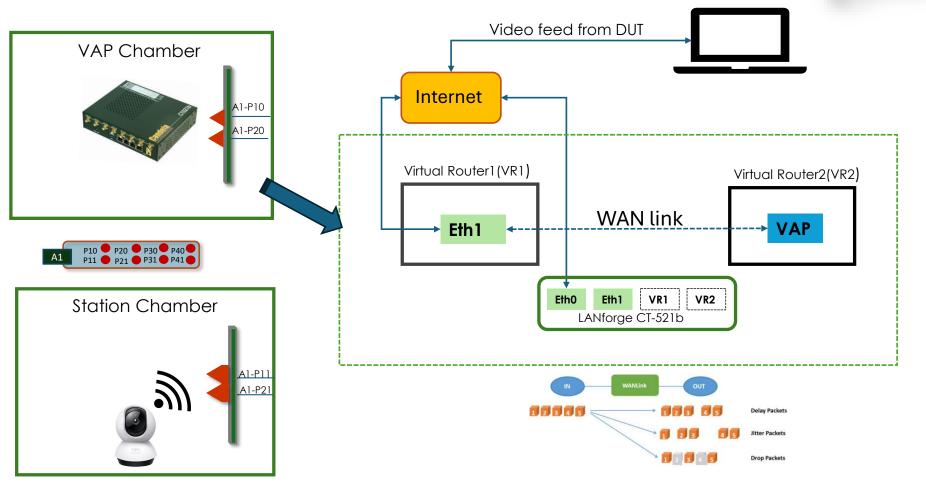
#### Video Observations








Noticeable video buffering is observed when channel utilization is over 90%. Video play is good till 80% channel utilization.








### Topology of Wan link





© 2024 Candela Technologies – All Rights Reserved

## The 3-approaches for AP/Router Testing







sting with Virtual Devices

Lab Testing with Real Devices

Repeatability:

Scalability:

Automation:

Realism:

Repeatability:

Scalability:

Automation:

Realism:

Real world Testing in Test House

| Repeatability | y: |
|---------------|----|
| Scalability   | :  |
| Automation    | :  |
| Realism       |    |



Candela India Test House

## Test House – 3500 Sqft Apartment



- Brick and Mortar construction
- Tile flooring.
- 10 feet ceilings.
- Standard wooden doors, wooden cupboards and cabinets.
- 4- Bed, 4-Bath, Living, Dining, Kitchen and Media Rooms.
- Independent building with very little or no external WiFi or RF interference
- Fully equipped home with all furniture and furnishings
- Lots of WiFi Devices of various types (Laptops, Smartphones, Tablets, TVs, Cameras, IoT Devices etc...)





#### **Single AP/Router**

Full Performance Analysis of a Single WiFi Access Point in the Test House

#### **Full Mesh Systems**

Test Full in home WiFi Mesh System for Coverage, Capacity and Mobility

#### **Computing Devices**

Test the latest WiFi Laptops, Smartphone and Tablets

#### **Smart Home Devices**

All Smart Home devices including Consumer Electronics and Home Automation/Security Devices

# Test Categories





#### Coverage

- RSSI Heat Map
  - Throughput Heat
- Мар
- ✓ Channel Heat
- Map
- ✓ BSSID Heat Map



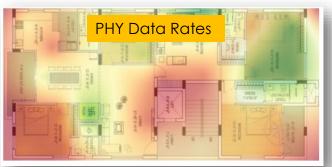
#### Capacity

- ✓ Client Count
- ✓ Connection Times
- ✓ Total Throughput
- ✓ Throughput per Node
- ✓ Throughput per Band
- ✓ Load Balancing
- ✓ Band Steering



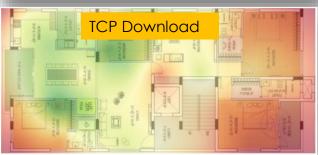
#### Mobility

- ✓ Roam Times
- ✓ Roam Patterns
- ✓ Service
  - Interruptions
    User Experience




#### Interoperability

- Throughput with different types of Phones/Tablets/La ptops
- Connection
  Times/Performance
  over Distance


# Coverage/User Experience Heatmaps























# Wi-Fi Mesh System Testing in Candela Testhouse

## Testing with Robotic Self Driving Vehicle

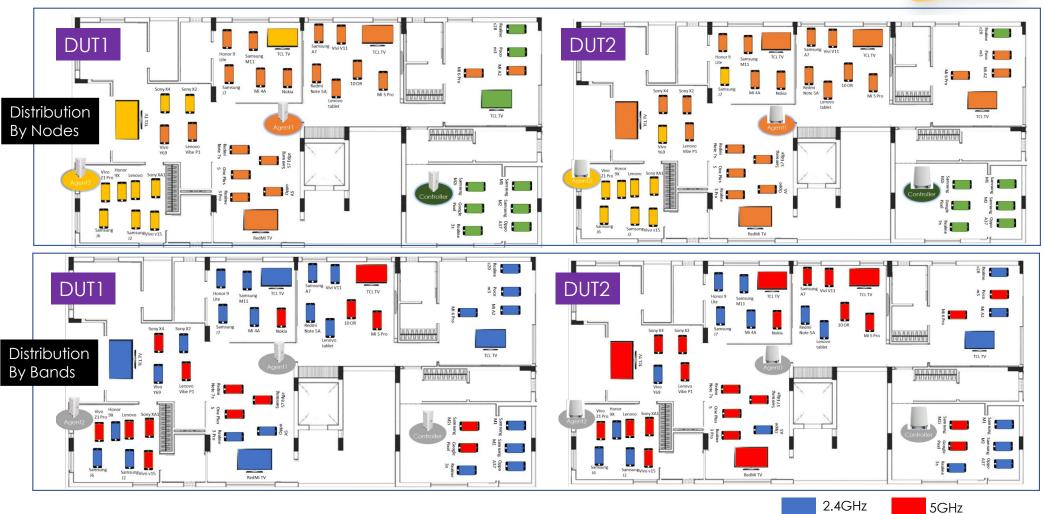






# Two Story Villa Test House








© 2023 Candela Technologies – All Rights Reserved

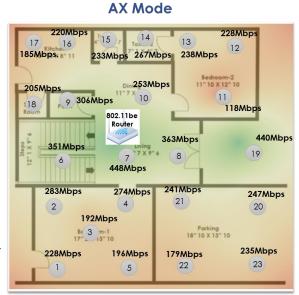
#### Mesh Testing - Device Distribution by Nodes and Bands



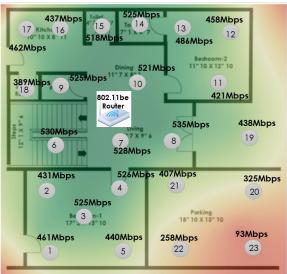


# 802.11be (Wi-Fi7) Router Test House Results




- 3000 sqft 2-level home with brick and mortar construction.
- WiFi7 Router placed in a central location in the lower level of the home.

#### Observations:


- Substantial improvement in the throughput in 2.4GHz with 11be in all locations.
- 6GHz was not able to get proper coverage across all measurement points with client losing connectivity at many of the far points.
- Overall 11be provided much better throughput at near distances and no real improvement in range.



# Throughput in 2.4GHz band







30 298Mbps

517Mbps 24

303Mbps

208Mbps

38

534Mbps

25

376Mbps

31

258Mbps

313Mbps

244Mbps

39

150Mbps

26

313Mbps

73 35

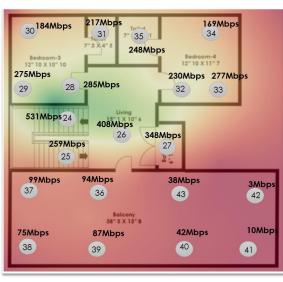
107Mbps

316Mbps 32

413Mbps

27

261Mbps


237Mbps

40

43



Ground Floor



400

200

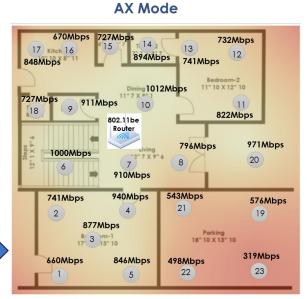
268Mbps

183Mbps

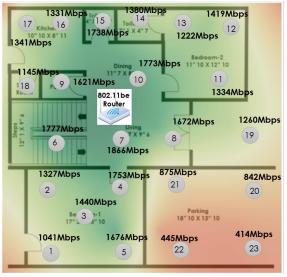
34

- 0

54Mbp


122Mbp

41


42

First Floor

#### Throughput in 5GHz band

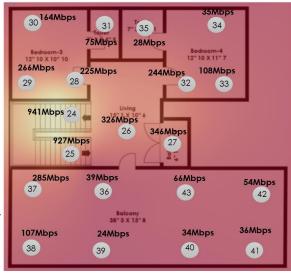


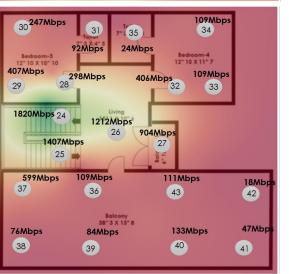






1500


1000

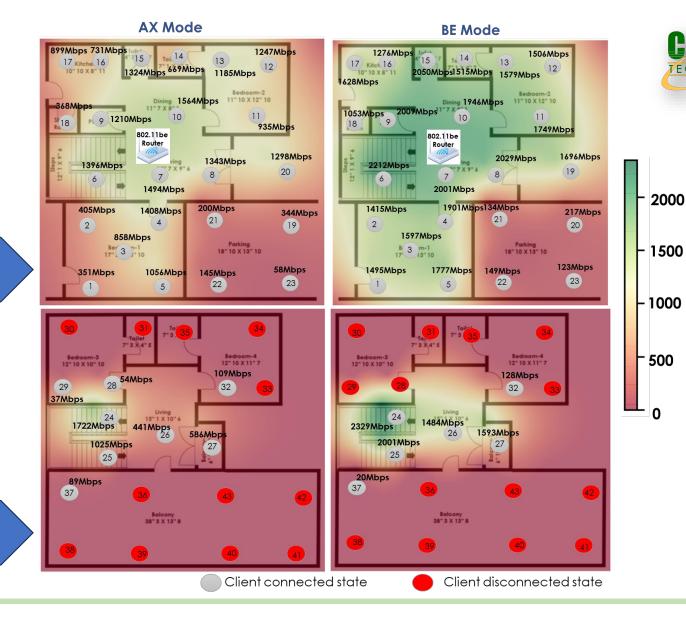

500

Ground Floor

First

Floor





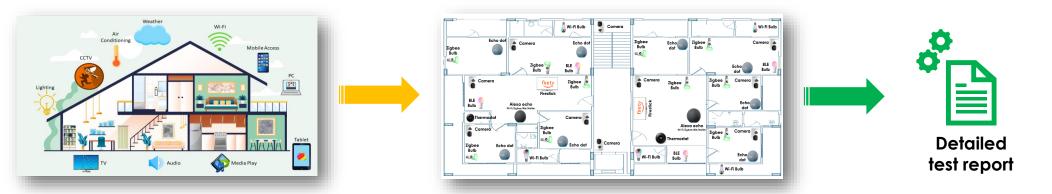

# Throughput in 6GHz band

Ground

Floor

First Floor

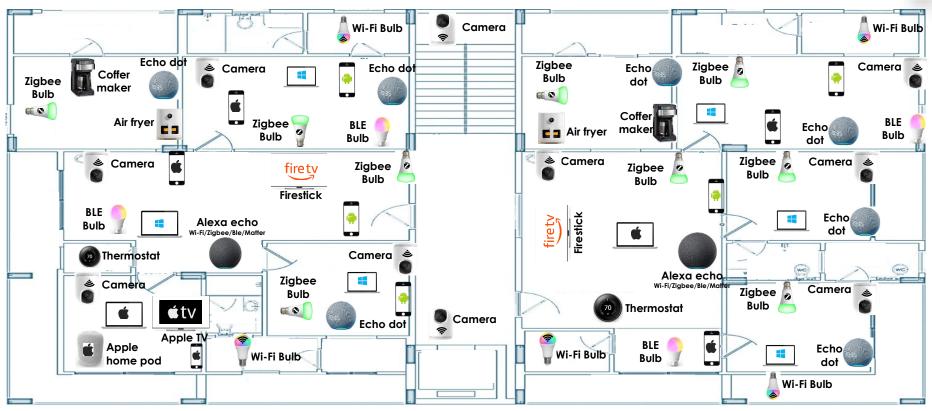



|               | C            | 2.4GHz |      | 5GHz |      | 6GHz |      |
|---------------|--------------|--------|------|------|------|------|------|
|               | Co-ordinates | 11ax   | 11be | 11ax | 11be | 11ax | 11be |
|               | 1            | 228    | 461  | 660  | 1041 | 351  | 1495 |
|               | 2            | 283    | 431  | 741  | 1327 | 405  | 1415 |
|               | 3            | 192    | 525  | 877  | 1440 | 858  | 1597 |
|               | 4            | 274    | 526  | 940  | 1753 | 1408 | 1901 |
|               | 5            | 196    | 440  | 846  | 1676 | 1056 | 1777 |
|               | 6            | 351    | 530  | 1000 | 1777 | 1396 | 2212 |
|               | 7            | 448    | 528  | 910  | 1866 | 1494 | 2002 |
|               | 8            | 363    | 535  | 796  | 1672 | 1343 | 2029 |
|               | 9            | 306    | 525  | 911  | 1621 | 1210 | 2009 |
| Cround Floor  | 10           | 253    | 521  | 1012 | 1773 | 1564 | 1946 |
| Ground Floor  | 11           | 118    | 421  | 822  | 1334 | 935  | 1749 |
| Throughput in | 12           | 228    | 458  | 732  | 1419 | 1247 | 1506 |
| · · ·         | 13           | 238    | 486  | 741  | 1222 | 1185 | 1579 |
| Mbps          | 14           | 267    | 525  | 894  | 1380 | 669  | 1515 |
|               | 15           | 233    | 518  | 727  | 1738 | 1324 | 2050 |
|               | 16           | 220    | 437  | 670  | 1331 | 731  | 1276 |
|               | 17           | 185    | 462  | 848  | 1341 | 899  | 1628 |
|               | 18           | 205    | 389  | 727  | 1145 | 368  | 1053 |
|               | 19           | 440    | 438  | 971  | 1260 | 1298 | 1696 |
|               | 20           | 247    | 325  | 576  | 842  | 344  | 217  |
|               | 21           | 241    | 407  | 543  | 875  | 200  | 134  |
|               | 22           | 179    | 258  | 498  | 445  | 145  | 149  |
|               | 23           | 235    | 93   | 319  | 414  | 58   | 123  |
|               | 24           | 531    | 517  | 941  | 1820 | 1722 | 2329 |
|               | 25           | 259    | 534  | 927  | 1407 | 1025 | 2001 |
|               | 26           | 408    | 487  | 326  | 1212 | 441  | 1484 |
|               | 27           | 348    | 413  | 346  | 904  | 586  | 1593 |
|               | 28           | 285    | 313  | 225  | 298  | 54   | 0    |
|               | 29           | 275    | 376  | 266  | 407  | 37   | 0    |
| First         | 30           | 184    | 298  | 164  | 247  | 0    | 0    |
|               | 31           | 217    | 258  | 75   | 92   | 0    | 0    |
| Floor         | 32           | 230    | 316  | 244  | 406  | 109  | 128  |
|               | 33           | 277    | 183  | 108  | 109  | 0    | 0    |
| Throughput in | 34           | 169    | 268  | 35   | 109  | 0    | 0    |
| Mbps          | 35           | 248    | 107  | 28   | 24   | 0    | 0    |
| 141003        | 36           | 94     | 244  | 39   | 109  | 0    | 0    |
|               | 37           | 99     | 303  | 285  | 599  | 89   | 20   |
|               | 38           | 75     | 208  | 107  | 76   | 0    | 0    |
|               | 39           | 87     | 150  | 24   | 84   | 0    | 0    |
|               | 40           | 42     | 237  | 34   | 133  | 0    | 0    |
|               | 41           | 10     | 122  | 36   | 47   | 0    | 0    |
|               | 42           | 3      | 54   | 54   | 18   | 0    | 0    |
|               | 43           | 38     | 261  | 66   | 111  | 0    | 0    |

| Impro  | vement due | to libe    |
|--------|------------|------------|
| 2.4GHz | 5GHz       | 6GHz       |
| 102%   | 58%        | 326%       |
| 52%    | 79%        | 249%       |
| 173%   | 64%        | 86%        |
| 92%    | 86%        | 35%        |
| 124%   | 98%        | 68%        |
| 51%    | 78%        | 58%        |
| 18%    | 105%       | 34%        |
| 47%    | 110%       | 51%        |
|        | 78%        |            |
| 72%    |            | 66%<br>24% |
| 106%   | 75%        |            |
| 257%   | 62%        | 87%        |
| 101%   | 94%        | 21%        |
| 104%   | 65%        | 33%        |
| 97%    | 54%        | 126%       |
| 122%   | 139%       | 55%        |
| 99%    | 99%        | 75%        |
| 150%   | 58%        | 81%        |
| 90%    | 57%        | 186%       |
| 0%     | 30%        | 31%        |
| 32%    | 46%        | -37%       |
| 69%    | 61%        | -33%       |
| 44%    | -11%       | 3%         |
| -60%   | 30%        | 112%       |
| -3%    | 93%        | 35%        |
| 106%   | 52%        | 95%        |
| 19%    | 272%       | 237%       |
| 19%    | 161%       | 172%       |
| 10%    | 32%        | -100%      |
| 37%    | 53%        | -100%      |
| 62%    | 51%        | 0%         |
| 19%    | 23%        | 0%         |
| 37%    | 66%        | 17%        |
| -34%   | 1%         | 0%         |
| 59%    | 211%       | 0%         |
| -57%   | -14%       | 0%         |
| 160%   | 179%       | 0%         |
| 206%   | 110%       | -78%       |
| 177%   | -29%       | 0%         |
| 72%    | 250%       | 0%         |
| 464%   | 291%       | 0%         |
| 1120%  | 31%        | 0%         |
| 1700%  | -67%       | 0%         |
| 587%   | 68%        | 0%         |
| 00770  | 00/0       | 0/0        |



## Candela's Home automation lab:






- Candela's Home automation lab has a complete deployment of IOT devices that involve in home automation and security.
- Using this home automation lab, we can try to validate the performance of your access point
  in a real time environment which is completely controllable and can give repetitive results.
- We also have various laptops, mobiles and MacBook's deployed across the house doing various streaming activities to mimic the real-world scenarios.
- We can easily identify the co-existence and congestion problems because of IOT devices and see how your access point is handling different conditions.
- We provide a detailed test report that involves the real-time statistics, latency reporting, streaming quality and user experience scores of all the devices present in the home.

#### Home automation Lab with IOT and real devices:





- We have placed real devices and mobiles across the home and every device will do various activities like gaming, video streaming, sending mails etc.. to, mimic the real-world home.
- Also, we have a dedicated space for Apple home automation devices and SMP's and home pod's.



## Devices available for test in Home automation lab:



#### Alexa controllers and extenders

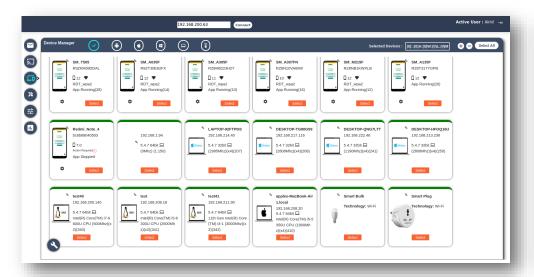
| Device Type     | Quantity |  |  |
|-----------------|----------|--|--|
| Echo Gen 4      | 2        |  |  |
| Echo show Gen 2 | 2        |  |  |
| Echo dot Gen 2  | 5        |  |  |
| Echo pop        | 2        |  |  |
| Echo dot gen 3  | 2        |  |  |

#### **Real devices**

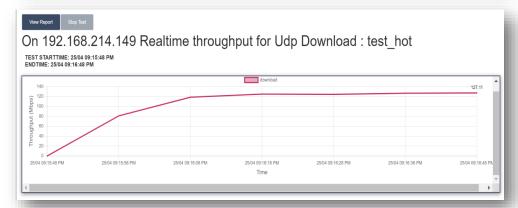
| Device Type    | Quantity |
|----------------|----------|
| MacBooks       | 2        |
| iPads          | 2        |
| Tablets        | 2        |
| Android phones | 5        |
| Windows/Linux  | 5        |

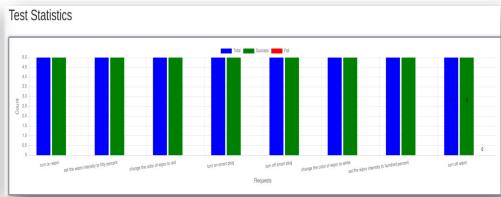
#### **IOT** devices

| Device Type                   | Quantity |
|-------------------------------|----------|
| Wi-Fi bulbs [Philips Wiz]     | 5        |
| Zigbee bulbs [Philips<br>Hue] | 5        |
| BLE bulbs [Philips]           | 2        |
| Smart plug [Zebronics]        | 1        |
| Smart cameras [Nest]          | 5        |


**Traffic Generators and jammers** 

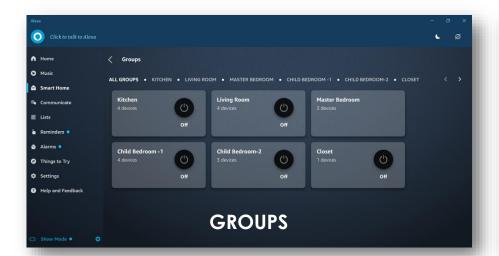
| Device Type           | Quantity |
|-----------------------|----------|
| LANforge              | 5        |
| Sniffers              | 5        |
| Jammer                | 2        |
| Virtual Access Points | 5        |
| Mesh extenders        | 2        |

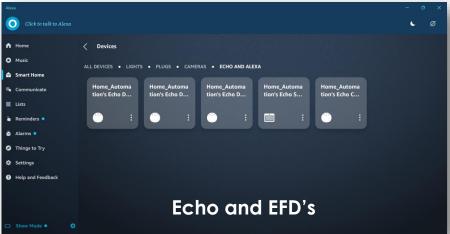




## Candela Real device controller UI: LANforge Interop







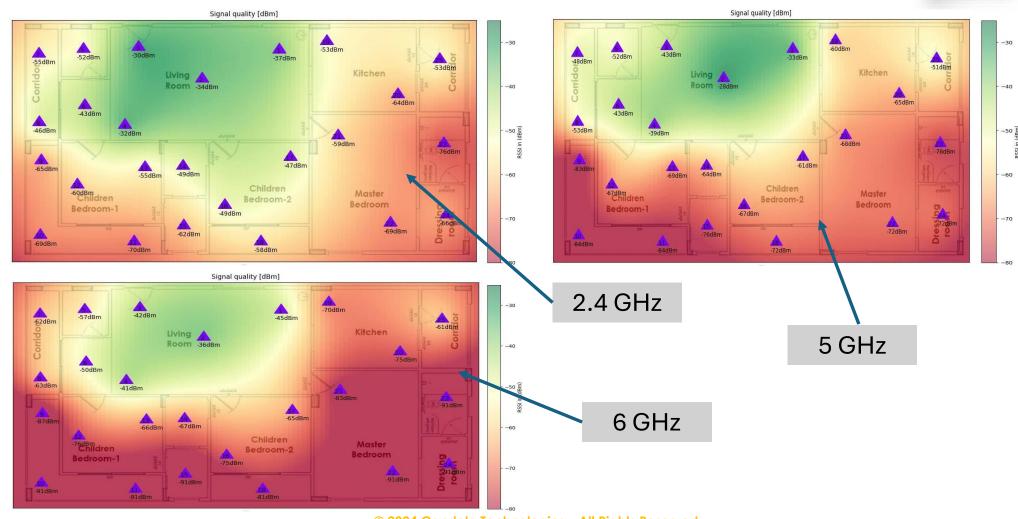



### Alexa device controller UI: IOT devices invocator







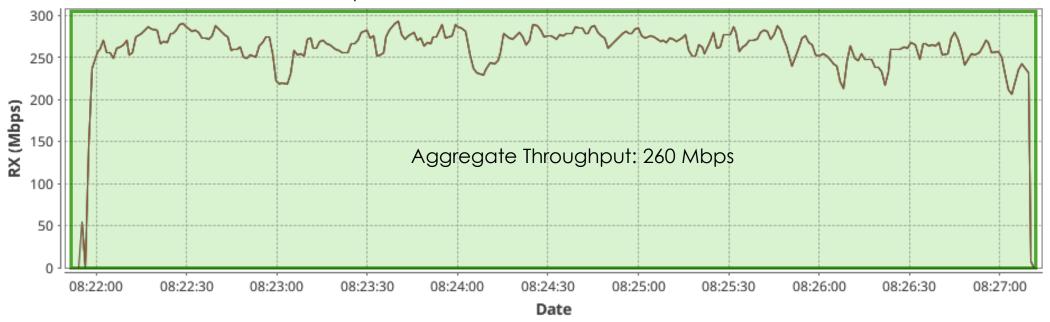



© 2024 Candela Technologies – All Rights Reserved



# Coverage of the DUT:



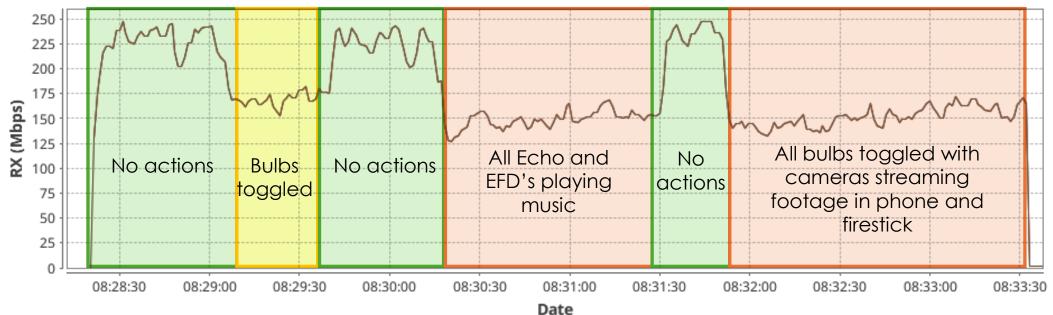



© 2024 Candela Technologies – All Rights Reserved

# Multi-client throughput test: Base-line performance



#### Baseline performance of the clients in Home Automation Lab

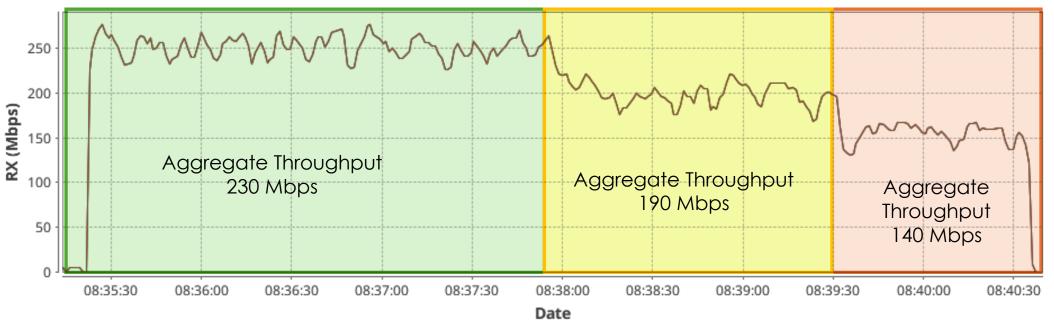



- 12 real clients of various operating systems like Windows, Linux, MacOS and Android place at various locations in the house running UDP download emulated traffic.
- The duration of the Baseline performance test is 5min and we have run intended load of 1Gbps.

## Multi-client throughput test: Random invocations








- Significant drop in performance of the 12 client's performance when randomly IOT devices are performing actions.
- The devices are placed at various locations of the Home automation lab.
- We have run the test for 5 min and provided intended load of 1Gbps to all the real-clients.

## Multi-client throughput test: Incremental actions



Incremental fashion-based actions of home automation effecting performance of Wi-Fi



All the clients running traffic when all IOT bulbs and switches are being toggled randomly across the home

When security cameras have started playing footage in mobiles and firestick
Note: Bulbs are turned on

When all the echo and echo dots have started playing music.
Note: Bulbs and cameras are also active

## Home automation lab test plan:



- 1.1 Congestion and co-existence test.
- 1.2 High traffic and 4k streaming test.
- 1.3 Performance over distance test.
- 1.4 Non-line of sight detection test.
- 1.5 Client roaming and stability test.
- 1.6 Intrusion detection test.



