

(v)

Module-2
WLAN Physical Layer
Session-2d

Last Session Recap......

Module-2
 WLAN Physical Layer
 Session-2C

MCS Table / PHY Data Rates

\checkmark MCS table data rates for all standards
\checkmark Modulation, Coding, BW, Number of Spatial Streams, Guard Interval
\checkmark Theoretical Throughput
\checkmark Demo of Throughput achieved with different client types.

From Communications to Networking

Path of a Packet on the Internet

Why Layers?

OSI Network Layers

OSI (Open Source Interconnection) 7 Layer Model

Layer	Application/Example	Central Device/ Protocols			DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access - Directory services • Network management	Applica SMT	ns	G A T E W A Y Can be used on ail layers	
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the	Syntax layer encrypt \& decrypt (if needed) Character code translation - Data conversion - Data compression - Data encryption - Character Set Translation	JPEG/A EBDIC/TII PICT	/GIIF		Process
Session (5) Allows session establishment between processes running on different stations.	Synch \& send to ports (logical ports) Session establishment, maintenance and termination - Session support - perform security, name recognition, logging, etc.	Logical RPC/SQL NetBIOS	Ports /NFS names		
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control Message segmentation - Message acknowledgement • Message traffic control - Session multiplexing	TCP/SPX	/UDP		$\begin{gathered} \text { Host to } \\ \text { Host } \end{gathered}$
Network (3) Controls the operations of the subnet deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing - Subnet traffic control - Frame fragmentation -Logical-physical address mapping • Subnet usage accounting	Rout			Internet
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card - Switch - NIC card] (end to end) Establishes \& terminates the logical link between nodes - Frame traffic control - Frame sequencing. Frame acknowledgment . Frame delimiting • Frame error checking • Media access control	Switch Bridge WAP PPP/SLIP	$\begin{aligned} & \text { Land } \\ & \text { Based } \\ & \text { Layers } \end{aligned}$		Network
Physical (1) Concerned with the transmission and reception of the unstructured raw bit over the physical medium.	Data Encoding • Physical medium attachment Transmission technique - Baseband or Broadband Physical medium transmission Bits \& Volts	Hub			

Segment/Packet/Frame Headers/Encapsulation

OSI Model	IEEE Model
Network layer	
Data Link layer	
Physical layer	

OSI Model	IEEE Model
	Network layer
Network layer	
	Logical Link Control
Data Link layer	$--------$
	Media Access Control
Physical layer	Physical Layer Convergence
	Procedure (PLCP)
	Physical Medium Dependent (PMD)

There are 2 Layers and 4 sub-layers in the 802.11 standard:

- Layer 1 with PLCP and PMD as sub-layers plus PSDU and PPDU as encapsulation units
- Layer 2 with LLC and MAC as sub-layers plus MSDU and MPDU as encapsulation units

Network

Wi-Fi Physical Layer

The physical layer is divided into two sublayers:

- Physical Layer Convergence Procedure (PLCP) sublayer
- Adds PHY layer headers to MAC frame including preamble and other information
- Physical Medium Dependent (PMD) sublayer.
- Responsible for transmitting any bits it receives from the PLCP into the air using the antenna

The physical layer also incorporates a clear channel assessment (CCA) function to indicate to the MAC when a signal is detected.

PLCP Protocol Data Unit (PPDU) Frame Formats

DSSS PPDU, 802.11-1999 (R2003)

ERP-OFDM PPDU (802.11a/g)

802.11b, DSSS PPDU, Short Preamble

802.11g, DSSS-OFDM PPDU, Short Preamble

Concept of Preamble

The 802.11 Physical Layer uses bursted transmissions or packets. Each packet contains a Preamble, Header and Payload data
The preamble defines a series of transmission criteria that indicates when someone is preparing to transmit data. When the information begins to transmit, all systems must begin interpreting the start of the transfer at the right time

The Preamble allows the receiver to obtain time and frequency synchronization and estimate channel characteristics for equalization. It is a bit sequence that receivers watch for to lock onto the rest of the transmission

802.11 Preamble is divided into two portions.

L-STF

The first is legacy short training field (L-STF), which consists of ten repetitions of a $0.8 \mu \mathrm{~s}$ short training symbol. This field, by virtue of its repetitive nature and good correlation properties, is utilized for: Frame detection, Automatic gain control (AGC), Symbol timing synchronization, Coarse frequency offset estimation

L-LTF

The other portion is legacy long training field (L-LTF), which contains two repetitions of a $3.2 \mu \mathrm{~s}$ long training symbol with a $1.6 \mu \mathrm{~s}$ Cyclic Prefix (CP). The main purposes of L-LTF are: Symbol timing synchronization, Fine frequency offset estimation, Channel estimation.

L-SIG
The L-SIG field is a symbol where each of the 48 data subcarriers is BPSK modulated. All stations on the channel read the Rate and Length information subfields and use this for different purposes. All of the receivers use this information to calculate the duration of time for this full-frame.

HT/VHT/HE preamble and Data field
Next after the legacy preamble, it is either the HT/VHT/HE preamble, if the frame is those frame types and the data field. Or only the data field (non-HT/ERP-OFDM).
Note: both managements-, control-, and data frames has the data field

802.11b PLCP Frame Format

IEEE std 802.11b PPDU frame with Long PLCP Preamble

IEEE std 802.11b PPDU frame with Short PLCP Preamble

- SYNC - The SYNC field is used by the receiver to acquire the incoming signals and to synchronize the receiver's carrier tracking and timing prior to receiving SFD
- SFD - (Start of Frame De-limiter) contains information regarding the start of a PPDU frame. The SFD is F3AOhex for the long preamble and the bit reversed value 0x05CF hex for the Short Preamble
- SIGNAL - field defines what type of modulation must be used to receive the incoming PSDU.
- $00001010-1 \mathrm{Mbit} / \mathrm{s}, 00010100-2 \mathrm{Mbit} / \mathrm{s}, 00111110-5.5 \mathrm{Mbit} / \mathrm{s}, 01101110-11 \mathrm{Mbit} / \mathrm{s}$
- SERVICE - Three bits of the service field are used by 802.11 b . The rest of the service field bits are zero
- Bit 2 - determines whether the transmit frequency and symbol clocks use the same oscillator
- Bit 3 - indicates whether CCK or PBCC is used (PBCC was a competing technology by TI to CCK - however it was rejected by the 802.11 standards committee)
- Bit 7 - bit 7 of the service field is used with the Length field to determine the time in microseconds
- LENGTH - is an unsigned 16- bit integer that indicates the number of microseconds necessary to transmit the PSDU
- CRC - Cyclic Redundancy Check for Error Checking.

PHY Frame Format for Various Standards

Non-HT Format PPDU

Clear Channel Assessment (CCA)

Wi-Fi used a "Listen Before Talk" mechanism for accessing the medium

CCA also known as Physical Carrier Sensing, is a method used to determine if the medium is busy. Physical carrier sense is performed constantly by all Wi-Fi radios that are not transmitting or receiving.

Physical carrier sense has two purposes:

1. Determine in the receiver has any information to receive.
2. Determine if the medium is busy before transmission

Signal Detect (SD) threshold is statistically a 4 dB signal-to-noise ratio (SNR) to detect 802.11 preamble

Energy Detect (ED) threshold is 20 dB above the signal detect threshold

$$
\begin{aligned}
& \text { CCA: } \\
& S D=4 \mathrm{~dB} \text { SNR } \\
& E D=S D+20 \mathrm{~dB}
\end{aligned}
$$

802.11 radios use two separate CCA thresholds when listening to the RF medium:

Signal detect (SD) threshold is used to identify any 802.11 preamble transmissions from another transmitting 802.11 radio. SD threshold is statistically around 4 SNR. In other words, an 802.11 radio can usually decode any incoming 802.11 preamble transmissions at a received signal at about 4 dB above the noise floor.

The energy detect (ED) threshold is used to detect any other type of RF transmissions during the CCA so that the receiver can not initiate any transmission during that time.

Listen before Talk Algorithm

References

Computer Networking: A top down approach
http://gaia.cs.umass.edu/kurose_ross/online_lectures.htm
WLAN PHY PPDU Structure
https://www.mathworks.com/help/wlan/gs/wlan-ppdu-structure.html
The Importance of Detecting the 802.11 Preamble
https://gjermundraaen.com/2020/11/22/the-importance-of-detecting-the-802-11-preamble/
What is Clear Channel Assessment
https://www.extremenetworks.com/resources/blogs/what-is-a-clear-channel-assessment-cca
Example Wi-Fi Analyzer Tool
https://www.acrylicwifi.com/en/wifi-analyzer/

Quiz 2c Results

Number of participants - 126

Score distribution - quiz 2c

