
sales@candelatech.com
support@candelatech.com

+1 (360) 380-1618 [PST, GMT -8]
Network Testing and Emulation Solutions

WiFi Captive Portal Bot (portal-bot)

Goal: Execute a battery of of captive portal logins from virtual wifi stations using the newer portal-bot.pl
script.

Public access open WiFi service is often gated
with a web sign-on form (a captive portal).
LANforge virtual stations can emulate sign-in to
the captive portal using the portal-bot.pl script.
This script is by necessity incomplete because
many captive portals have different behaviors
and login form requirements. With this script, you
provide a bot plugin that bridges the gap. This
cookbook will coach you through a basic portal-
bot integration and then you will create ten
stations that authenticate through a captive WiFi
portal.

In this example, we will be testing agains a simple
LAMP server on the upstream side of the AP. Do
no use your LANforge server as the LAMP server
because the routing will be difficult. In this
chapter, a LAMP server is at 10.26.1.254, and
there is an /etc/hosts entry for basic-portal to
that address.

Basic Interactions of a Captive Portal

The basic order of operations of a captive portal are summarized in these steps:

1. A WiFi station accesses the LAN and is assigned a DHCP address.

2. The AP redirects any DNS and HTTP(s) request from the station. It returns either
a login page directly

a 301-Redirect to the login page

3. The station user submits this form. This form knows where to submit itself to, but it is possible that the form
does not submit to the same address or service that it came from.

4. A successful authentication provides one of these responses:
The originally requested page, either as a 301-Redirect or as a proxied result.

A portal-div providing a logout or service menu and the original content inside.

A redirect page that uses javascript or meta-refresh mechanisms to tell the browser to reload
the originally requested page.

http://www.candelatech.com/
mailto:sales@candelatech.com
mailto:support@candelatech.com
tel:+13603801618
https://en.wikipedia.org/wiki/LAMP_%2528software_bundle%2529

Configuring a Demo Captive Portal
Provide Login/Logout pages

If you wish to set up a login and logout page on an Apache/PHP server to test with, you can copy the below files
to the /var/www/html directory on the LAMP server.
login.php:

<!DOCTYPE html !>
<?php
$valid = true;
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 /* custom error reporting, see get_explanation */
 if (!array_key_exists('username', $_POST)) {
 header("HTTP/1.1 400 Bad Request");
 header("X-err-no: 9400");
 header("X-err-msg: missing username");
 $valid = false;
 }
}
?>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<?php if($valid) { ?>
 <title>Login</title>
<?php } else { ?>
 <title>Bad Request</title>
<?php } ?>
</head>
<body>
 <?php if ($_SERVER['REQUEST_METHOD'] == 'POST') { ?>
 <?php if(!$valid) { ?>
 <h1>Bad Request</h1>
 <?php return; } ?>

 <?= $_POST['username'] ?> access granted.
 <?php } else { ?>
 <form method="post" action="">
 Login:<input type="text" name="username" value="" />

 <input type="submit" name="login" value="Login" />
 </form>
 <?php } ?>
</body>
</html>

Provide a Redirect in lieu of Portal Capture

Getting a redirect to the login page does not have to be very complex. The portal-bot script will first start off
requesting whatever URL you wish, so request http://basic-portal/start. Here is an Apache configuration line
to redirect that URI to login.php :
httpd.conf

<Location /start>
 Redirect /start /login.php
</Location>

After adding this redirect, restart your Apacher service using this command:

sudo apachectl configtest && sudo apachectl restart

Testing your redirect

You can use the command curl -sqv http://basic-portal/start to test out the redirect you just created.

Using the Portal Bot bash script

Before we get straight to working with portal-bot.pl , let's see how it is used. Your LANforge installation has an
example script called portal-bot.bash-example for you to copy and modify. This script is intended for you to
login and logout separately. The LANforge manager will call portal-bot.pl differently when building up the
station or tearing down the station, these actions are similar:

i ./portal-bot.bash will log your station in

i ./portal-bot.bash --logout will log your station out

Inside the bash script

The portal-bot.bash script is for exercising your portal-bot.pl script options from the command line while you
develop with it. This is very close to the values you will place in the Ports→Misc/Post IF-UP field.

Switches you won't use in the GUI

You will never place the PBOT_NOFORK option in the Ports→Misc/Post IF-UP field because that will interrupt the
processing of the LANforge Manager process. You will also never place $* in that field, either. You can place
the --verbose and --debug flags in there, but it can fill your disk with log output more quickly.

Below is an example portal-bot.bash script with \ line-continuation characters formatted for clarity:

PBOT_NOFORK=1 ./portal-bot.pl \
 --dev sta100 \
 --bot bp.pm \
 --ip4 10.26.2.30 \
 --dns 192.168.100.1 \
 --mgt /dev/null \
 --delays 0,1,3 \
 --user "bob" \
 --pass "secret" \
 --ap_url "http://basic-portal/" \
 --start_url "http://basic-portal/start" \
 --login_form "login.php" \
 --login_action "login.php" \
 --logout_url "logout.php" \
 --verbose --debug $*
Below is the same script using short switches:

PBOT_NOFORK=1 ./portal-bot.pl \
 -i sta100 \
 -b bp.pm \
 --ip4 10.26.2.30 \
 --dns 192.168.100.1 \
 --mgt /dev/null \
 --delays 0,1,3 \
 -u "bob" \
 -p "secret" \
 -a "http://basic-portal/" \
 -s "http://basic-portal/start" \
 -n "login.php" \
 -o "login.php" \
 -t "logout.php" \

 -v -d $*

Using the portal-bot.bash command on the command-line:

A common misconception is thinking that $* is a command-line argument. It is only used in bash scripts. Do not
put $* on the command-line.

PBOT_NOFORK=1 ./portal-bot.pl -i sta100 -b bp.pm --ip4 10.26.2.30 \
 --dns 192.168.100.1 --mgt /dev/null -u "bob" -p "secret" \
 -a "http://basic-portal/" -s "http://basic-portal/start"
 -n "login.php" -o "login.php" -t "logout.php" -v -d

Using the portal-bot.pl perl script
Tips:

First thing to do: edit a copy of that script and adjust it for your station device and it's IP address.

Add -d to add more debugging messages. That makes dbg() statements print.

Add --print after you get the script to work. This will print out the format of the arguments useful for
putting the statements into the GUI Ports→Misc/Post IF-UP field.

The first six arguments are provided by LANforge when you use portal-bot.pl with a station. You want to
populate these in your bash script, but not in the Post IF_UP field.

PBOT_NOFORK

This environment variable tells the portal-bot.pl script to not fork. Use it only when developing. Omitting
this is normal and allows for multi-processing of web requests from LANforge.

-i

station name

--bot

The bot plugin you provide

--ip4

The IP of the station. This script is useless if there has been no DHCP lease.

--ip6

Use '' for no IPv6 address.

--dns

The DNS addresses provided from the DHCP lease

--mgt

The FIFO that signals the LANforge server. You don't use it when testing.

The second set of arguments describe your own AP environment:

--user | -u

portal user name

--pass | -p

portal user password

--ap_url | -a

A string to prepend to URLs when talking to the AP. Not necessary, but if you don't use it, you have to
provide fully qualified URLs to --login_form, --login_action, and --logout_form.

--start_url | -s

The first URL requested from the AP, this should provide either a login page or a redirect to a login page. If
you get your destination page (like, if you request baidu.com and actually get it), your station has
probably not been logged out from the captive portal.

--login_form | -n

This is what you request to get a login form. Often it is returned in the redirect, but sometimes you cannot
get a cookie assignment if you do not request it specifically.

--login_action | -o

Submit your login credentials to this URL.

--delays

Comma separated list of seconds to delay at certain points:
1. $::delays[0] Used to delay the very first 'start_url' GET request

2. $::delays[1] Used to delay the first POST request in 'submit_login'

3. $::delays[2] Used to delay the 'submit_logout' request.

4. $::delays[3+] Your bot can utilize further delays if you specify

You may specify skips by adding a zero: --delays 1,0,2

You may specify a random time by using 'random': --delays 1,random,2

You may specify just one time for all delays: --delays 2

You may specify a random range: --delays 3-20,4-25

--logout_form | -t

Submit to this URL to log out of the captive portal

-v -d

Verbose and debug output, respectively.

--print

Skips process and prints out formatted arguments.

$*

Expands to all remaining shell arguments

We will connect to our LANforge system*. You want to copy this file to your own ./portal-bot.bash file, edit it
and then make it executable.

i * You can connect via VNC, PuTTY or other SSH client.

i Use chmod +x portal-bot.bash to make your script executable.

Now let's see how to use this script with station sta100. Run the commands:

 $ cd /home/lanforge
 $ chmod +x portal-bot.bash
 $./portal-bot.bash

You will see a lot of output, it will show the contents of the web pages it finds.

Watching the Logs

Typically you won't need to look at this output in the terminal, and you will not add -d -v flags to your LANforge
stations. You very likely will need to check the log output from these scripts in case you need to diagnose
connection problems during your test. Each virtual station leaves a log in the /home/lanforge/wifi directory,
like wifi/portal-bot.sta100.log
i Watch logs using tail: tail -F wifi/portal-bot.sta100.log

Executing the LANforge curl commands yourself

To find the actual curl commands being executed, you want to grep the logs. Below is an example of
grepping the logs and running the curl command.

 $ cd /home/lanforge/wifi
 $ grep Submitting portal-bot-sta100.log
Submitting: /home/lanforge/local/bin/curl -sLki -c /tmp/sta100_cookie.txt -b /tmp/sta100_cookie.txt -4 --interface sta100 --localaddr 10.44.4.222 --dns-servers 192.168.100.1 --dns-interface sta100 --dns-ipv4-addr 10.44.4.222 -X GET 'http://basic-portal/start'
Submitting: /home/lanforge/local/bin/curl -sLki -c /tmp/sta100_cookie.txt -b /tmp/sta100_cookie.txt -4 --interface sta100 --localaddr 10.44.4.222 --dns-servers 192.168.100.1 --dns-interface sta100 --dns-ipv4-addr 10.44.4.222 -X POST -d 'username=bob' 'http://basic-portal/login.php'

You might noticed that some of the commands in the log might appear repeated, there are areas of
redundant logging. There is a case where you can legitimately see repeated commands: when you have an
Post IF_UP value configured for the port you are testing with. (Remember that the Post IF_UP field should be blank
when developing the script.)

Remember, this curl command cannot be run without first doing a source /home/lanforge/lanforge.profile
in your shell (our curl is a custom build). Here is an example. We take a command similar to the one above, add
-qv and cancel it using Ctl-C :

 $ cd /home/lanforge
 $ source lanforge.profile
 # add a -qv to see header details
 $ /home/lanforge/local/bin/curl -qv -sLki -c /tmp/sta100_cookie.txt -b /tmp/sta100_cookie.txt -4 --interface sta100 --localaddr 10.41.4.223 --dns-interface sta100 --dns-ipv4-addr 10.41.4.223 http://basic-portal/start
* STATE: INIT => CONNECT handle 0xa80158; line 1397 (connection #-5000)
* Added connection 0. The cache now contains 1 members
* Trying 10.51.0.254...
* TCP_NODELAY set
* bind-local, addr: 10.41.4.223 dev: sta100
* SO_BINDTODEVICE sta100 failed with errno 1: Operation not permitted; will do regular bind
* Name 'sta100' family 2 resolved to '10.41.4.223' family 2
* Local port: 0
* STATE: CONNECT => WAITCONNECT handle 0xa80158; line 1450 (connection #0)
^C

Explaining the curlCommand

There are many arguments to the curl command, but in general, you should be able to copy and paste the
command into a terminal and it should work (see note about lanforge.profile above). Below is an example
of a curl command, with \ characters as line-continuation marks, formatted for clarity.

 $ /home/lanforge/local/bin/curl -qv \
 -sLki \

 -c /tmp/sta100_cookie.txt \
 -b /tmp/sta100_cookie.txt \
 -4 \
 --interface sta100 \
 --localaddr 10.41.4.223 \
 --dns-interface sta100 \
 --dns-ipv4-addr 10.41.4.223 \
 http://basic-portal/start

Switch Example Value Purpose

-q Suppress page output

-v Verbose, prints diagnostic steps

-s Suppresses page output

-L Follow redirects

-k Suppress certificate validation errors

-i Print HTTP headers

-c sta100_cookie.txt Send cookies from file

-b sta100_cookie.txt Save cookies to file

-4 Use IPv4

--interface sta100 bind to this interface

--localaddr 10.41.4.223 bind to this address

--dns-interface sta100 send DNS queries from this interface

--dns-ipv4-addr 10.41.4.223 bind to this address when sending DNS queries

--dns-interface sta100 send DNS queries from this interface

-X
GET Use HTTP GET method

POST Use HTTP POST method

-d 'username=bob' URL encoded form parameters used during POST method

Your portal-bot.bash script is intended to be a way of focusing on the development of your bot plugin and not
repetitively typing a long curl command.

Writing your Bot Plugin

Your bot plugin, the Perl module you will write for your captive portal, is central to the operation of the portal-
bot.pl script. It is also important that you do not alter the portal-bot.pl script unless absolutely necessary,
because your changes could be overwritten by upgrades. Any alteration to the time at which the fork() call is
made in this script can make the LANforge server grind to a halt.

i Only edit your bot perl module, please.

The Bot Subroutines

The example bot, bp.pm, provided with LANforge defines four subroutines. In order:

find_redirect_url

This subroutine receives the response of the HTTP(S) GET of your --start_url parameter. Look through this to
see if:

you are already getting destination content--if so, you were not logged out,

you get a login form directly and not a redirect,

or you get a redirect to a login page (possibly on a separate port like :8080)

If you get a redirect to another port, compare the --login_url value to this. If it is different, consider updating
your login_url parameter.

There might be many form parameters, like ones for a session id, a PHP_SESSID, a cookie, a base64
encoded string indicating your originally requested url (or just a plain URL-encoded url), and any possible
co-branding parameters that might indicate any advertising campaigns associated with this captive
portal. Missing some of these might make submitting the form give you an error. Store these values as
necessary in your bot:: namespace. You do not submit your login page in this method.

i Define a package scope variable using our $thing; after your package
statement.

submit_login

Here is where you submit your login page forms. The botlib::request() function is provided to make GET
and POST requets verbose logging and debugging. The page is returned as lines in the @response array.

my $post_data = "username=".uri_escape($user_name);
my @response = ();
request({'curl_args'=> $::curl_args,
 'url' => $post_url,
 'method' => 'POST',
 'delay' => '0,3', # see --delays option
 'post_data' => $post_data,
 'print' => 1}, # turns on debugging
 \@response);

The submit_login function uses the $::delay[1] parameter if --delays were set. See paragraph on
randomDelay.

interpret_login_response

Here you determine if you are getting an access denied error or are being forwarded to your original
start_url destination. Set your $result variable to OK or FAIL. Use the logg() method to add information for
the wifi/portal-bot log.

In order to add events, such as page load time, you want to use the botlib::newEvent() function:

my $page_time = botlib::time_milli() - $::start_at;
newEvent("portal_login: $result", $page_time, $::dev);

Your event log will gain messages like these:

get_explanation

Some web applications can provide customized error messages in their response. You can add a
get_explanation() function to your bot to collect this information. The botlib::dbgdie() method will

take advantage of this method if available. Below is an excerpt from the method found in bp.pm:

sub get_explanation {
 for $line (@$ra_result) {
 ($err_code) = $line =~ /^X-err-no: (.*)$/
 if ($line =~ /^X-err-no: /);
 ($err_msg) = $line =~ /^X-err-msg: (.*)$/
 if ($line =~ /^X-err-msg: /);
 }
 return "$err_code, $err_msg";
}

Notice how this parses out the HTTP headers found if the parameter username were missing when doing a
POST to basic-portal/login.php :

header("X-err-no: 9400");
header("X-err-msg: missing username");

You will see these messages show up in the LANforge Events log:

submit_logout

Many captive portals do not publicise their logout URLs, so it might be available only on an admin page for
the AP. You will know when the logout_url parameter works if you can do a logout with that station, and
then successfully log back in using the same station and seeing the captive portal sign-in page again.

randomDelay

The delay parameter to botlib::request() has many overloads to the call:

A simple number is a simple delay in seconds. No other units are used.

If you specify 'random' in the delay parameter, the botlib::randomDelay() is called, producing
a range between [1 - 119] seconds.

If you specify '3-16', randomDelay(3, 16) is called to produce a random range between [3 - 16]
seconds.

If you specify two numbers separated by a comma, it looks at your @::delays list, and picks the
second argument if it can, the last item of @::delays if the list is too short, or the first argument if
there are no items in the delay list.

We have now covered all of the scripting development areas for the portal-bot.pl plugin you will write.

Configuring your Stations
A Single Station

We assume you have portal-bot.bash working at this point. This is how you can configure a single station:

1. Use the portal-bot.pl --print command to print out the arguments.

2. Copy the result (starting with "portal-bot.pl") into the Port->Misc window. Avoid populating this field
while you are developing the script! If you place a value into that field, your portal-bot script will not
only execute, but the Manager process will also execute the script specified in the POST_IFUP field. This
can be really confusing.

Multiple Stations

To get multiple virtual stations logging in an out using the GUI, we just need a few of those parameters for the
station configuration. We will use the Batch Modify feature to alter a series of stations.

1. In the Ports tab, create a series of stations. In this example we will create them with:

Port: wiphy2

Select DHCP-IPv4

Quantity: 10

STA ID: 300

SSID: jedtest

Passphrase: jedtest1

Select WPA2

Select Down

2. Highlight them and click Batch Modify.

3. Click the Down button.

4. In your terminal, invoke the portal-bot.bash with the --print argument:

./portal-bot.bash --print
portal-bot.pl --bot bp.pm --user bob --pass bob1 --ap_url http://basic-portal/
 --start_url http://basic-portal/start --login_form login.php --login_action login.php
 --logout_form logout.php

5. Use the [+] button to expand to Box 2. We will enter the following version of our command into the Post
IF-UP Script area. (The picture shows the short switches.)

Click OK

6. In the Ports tab, double click sta300 and in the Misc Configuration tab, you will see the Post IF-UP Script
values.

Testing a Station

Exercising these stations starts with bringing them up and down using the Batch Modify tool.

1. Highlight one station, sta300 , and click Batch Modify.

2. Click the Down button to admin-down the station.

3. In a shell on the LANforge, got to /home/lanforge/wifi and tail the log for station 300:

tail -f portal-bot.sta300.log

4. Click the Up button to admin-up the station.

5. Click the Portal Login button force the station to login if you do not see any messages in the log file you
are tailing.

Troubleshooting Techniques

If your station cannot talk to the captive portal, like you have a time-out, these steps will help identify where
there is a misconfiguration:

1. Ping the portal from LANforge:ping basic-portal

2. Ping the portal from sta300:ping -I 10.27.0.16 basic-portal

3. Use curl to download the portal page by hand: curl -sqv http://basic-portal/login.php
4. Check the route on the portal side if you are routing. Some examples:

route -n

route add -net 10.27.0.0/23 gw 10.26.1.1

5. Check access logs for the portal. There might be a hostname issue.

Using the Port Bringup Plugin

Using the Port Bringup Plugin is a much more fun way to get data than looking at log files.

1. In the Plugins menu, select Port Bringup Test.

2. Highlight a series of stations and click Add Port:

3. Click Start

4. You will see the reporting window. It often takes many seconds or a few minutes for stations to aquire
DHCP addresses and start reporting information into the plugin.

Candela Technologies, Inc., 2417 Main Street, Suite 201, Ferndale, WA 98248, USA
www.candelatech.com | sales@candelatech.com | +1.360.380.1618

	WiFi Captive Portal Bot (portal-bot)
	Goal: Execute a battery of of captive portal logins from virtual wifi stations using the newer portal-bot.pl script.
	Basic Interactions of a Captive Portal
	Configuring a Demo Captive Portal
	Provide Login/Logout pages
	Provide a Redirect in lieu of Portal Capture
	Testing your redirect

	Using the Portal Bot bash script
	Inside the bash script
	Switches you won't use in the GUI
	Using the portal-bot.bash command on the command-line:

	Using the portal-bot.pl perl script
	Tips:
	Watching the Logs
	Executing the LANforge curl commands yourself
	Explaining the curlCommand

	Writing your Bot Plugin
	The Bot Subroutines

	Configuring your Stations
	A Single Station
	Multiple Stations
	Testing a Station
	Troubleshooting Techniques

	Using the Port Bringup Plugin

