!!ﬂnlll!ma sales@candelatech.com

_________ support@candelatech.com

TECHNOLOGIES Network Testing and Emulation Solutions +1 (360) 380-1618 [PST, GMT -8]

Create Python Scripts To Test Layer 4 Traffic

Goal: Create a script to test Layer 4 traffic using Realm

Using the realm.py library we will write a script that will allow us to automate the creation of stations and
Layer 4 cross connects. We will also be able to start and stop traffic over the cross connects using the
script. Station and Cross Connect creation is covered in the Realm Scripfing Cookbook. Requires
LANforge 5.4.2.

1. Creating The Profile

A. We will use the factory method self.local_realm.new_14_cx_profile() to create our profile object.

B. After we have done this we can set a few variables for our traffic:

A. 14_cx_profile.requests_per_ten will set our rate of requests per fen minutes. Seffing requests per ten = 600
will set our URL request rate to 1 per second. There is no limit to what can be used as the rate but common rates
are:

m 600:1/s

= 1200:2/s
= 1800 :3/s
m 2400 : 4/s

B. 14_cx_profile.url is the URL fo be used in the requests. We will also need to specify the direction (dl/ul) and a
absolute path for the destination. See syntax here.
Example:
14 cx _profile.url = "dl http://10.40.0.1 /dev/null"

C. Example Layer 4 profile init:
class IPV4L4 (LFCliBase) :

def init (self, host, port, ssid, security, password, url, requests per
target requests per ten=600, number template="00000", resource=1, num t
_debug_on=False,
_exit on error=False,
_exit on fail=False):

super (). init (host, port, debug= debug on, halt on error= exit on errc

self.host = host

self.port = port

self.ssid = ssid

self.security = security

self.password = password

self.url = url

self.requests per ten = requests per ten

self.number template = number template

self.sta list = station list

self.resource = resource

self.num tests = num tests

self.target requests per ten = target requests per ten

self.local realm = realm.Realm(lfclient host=self.host, lfclient port=self.

self.cx profile = self.local realm.new 14 cx profile()
self.cx profile.url = self.url
self.cx profile.requests per ten = self.requests per ten

Station Profile init

http://www.candelatech.com/
mailto:sales@candelatech.com
mailto:support@candelatech.com
tel:+13603801618
https://www.candelatech.com/cookbook.php?vol=cli&book=Python:+Create+Test+Scripts+Using+Realm
https://www.candelatech.com/lfcli_ug.php#add_l4_endp

Starting Traffic

. When running traffic, if you plan to measure the rate of requests, it is recommended to do so in 10 minute
increments. An example of this can be seen here: test_ipv4_l4_urls_per_ten.py. To start the traffic we can use
the 14_cx_profile.start_cx() method. To stop the fraffic we can use the 14_cx_profile.stop_cx() method.

B. Example start and build method:
def build(self):
Build stations
self.station profile.use security(self.security, self.ssid, self.password)
print ("Creating stations")

self.station profile.create(resource=1, radio="wiphyO", sta names_ =self.sta_ list,

temp sta list = []
for station in range(len(self.sta list)):
temp sta list.append(str(self.resource) + "." + self.sta list[station])

self.1l4 profile.create (ports=temp sta list, sleep time=.5, debug =self.debug,

def start(self, print pass=False, print fail=False):
temp stas = self.sta list.copy()
temp stas.append("ethl")
cur time = datetime.datetime.now ()
interval time = cur time + datetime.timedelta (minutes=1)
passes = 0
expected passes = 0
self.station profile.admin up (1)
self.local realm.wait for ip(self.resource, temp stas)
self.1l4 profile.start cx()
print ("Starting test")
for test in range(self.num tests):
expected passes += 1
while cur_ time < interval time:
time.sleep (1)
cur_time = datetime.datetime.now ()

if self.1l4 profile.check errors(self.debug):
if self. check request rate():
passes += 1

else:
self. fail("FAIL: Request rate did not exceed 90% target rate", print i
break

else:
self. fail ("FAIL: Errors found getting to %s " % self.url, print fail)
break

interval time = cur time + datetime.timedelta (minutes=1)

if passes == expected passes:

self. pass("PASS: All tests passes", print pass)

Examining The Results

We can use http://localhost:8080/layer4/list to check our Layer 4 endpoints. Adding a ,.2fields to the end of

the URL will allow us to specify what we want to look at. We can separate fields by commas to show more

than one at a fime.
Example: http:/localhost:8080/1ayer4/listefields=name,urls/s,total-urls

m Using total-urls will show us the fotal requests made.
m Using urls/s will show us the average URL rate per second.

m Using rx rate and tx rate will show us the rates of received and transeferred traffic.

We can also use the url hitp://localhost:8080/layer4/all to see all of the available fields.

B. When checking our results for Layer 4 tests we might want to check for common URL related errors:

m acc. denied will show us the number of times we got an access denied error.
m bad-url will show us the number of tfimes a request was made with an invalid URL.

= nf (4xx) will count the number of 400 errors recieved when making requests to our URL.

https://github.com/greearb/lanforge-scripts/blob/master/py-scripts/test_ipv4_l4_urls_per_ten.py
http://localhost:8080/layer4/list
http://localhost:8080/layer4/all

Candela Technologies, Inc., 2417 Main Street, Suite 201, Ferndale, WA 98248, USA
www.candelatech.com | sales@candelatech.com | +1.360.380.1618

